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Abstract

The human face cues a wealth of social information, but the neural mechanisms that under-

pin social attributions from faces are not well known. In the current fMRI experiment, we

used repetition suppression to test the hypothesis that populations of neurons in face per-

ception and theory-of-mind neural networks would show sensitivity to faces that cue distinct

trait judgments. Although faces were accurately discriminated based on associated traits,

our results showed no evidence that face or theory-of-mind networks showed repetition sup-

pression for face traits. Thus, we do not provide evidence for population coding models of

face perception that include sensitivity to high and low trait features. Due to aspects of the

experimental design, which bolstered statistical power and sensitivity, we have reasonable

confidence that we could detect effects of a moderate size, should they exist. The null find-

ings reported here, therefore, add value to models of neural organisation in social perception

by showing instances where effects are absent or small. To test the generalisability of our

findings, future work should test different types of trait judgment and different types of facial

stimuli, in order to further probe the neurobiological bases of impression formation based on

facial appearance.

Introduction

Faces signal information that guide social interactions [1]. Although complex social signals

such as emotional states, trait characteristics, and attentional focus are readily perceived from

faces [2, 3], the neural mechanisms that process social dimensions of face perception remain

unclear. Here, in a functional magnetic resonance imaging (fMRI) experiment, we use repeti-

tion suppression to investigate the neural representation of how trait inferences are arrived at

during social perception.

The majority of neuroscience research on face perception has focused on detection and rec-

ognition of identity and emotion. This research has identified face-selective patches of cortex

that respond more to viewing faces than other categories of objects such as houses and cars [4–

6]. Key regions in the face perception network include the fusiform face area (FFA; [6]), occip-

ital face area (OFA; [7]) and posterior superior temporal sulcus (pSTS; [8, 9]). These three
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nodes are suggested to perform core visual analyses of facial features, but also interact with

extended circuits in anterior cortex for more elaborate representations of identity and emo-

tional valence [4, 5, 10].

Face recognition is important for initiating social interactions, but faces cue much more

than the mere presence of a social agent. Indeed, impressions of others are partly formed on the

basis of stable, non-emotional aspects of facial appearance [3, 11]. As such, there is interplay

between the perception of facial features and the formation of character impressions [2]. Models

of social impressions from faces have been developed that include dimensions of valence/trust-

worthiness, dominance and attractiveness [12–14]. However, there is currently little known

regarding the neural bases of such impression formation. For example, faces that cue social eval-

uations of trustworthiness and attractiveness have been associated with responses in the amyg-

dala and ventral striatum, which have been thought to index the reward value and typicality of

faces [15–19]. Additionally, behavioural research has shown that personality characteristics

such as extraversion are accurately perceived from static facial features [20–23]. However,

beyond brain circuits associated with reward, little is currently known regarding the neural

architecture supporting personality judgments that are cued during face perception.

Research investigating trait judgments has primarily focused on reading statements, rather

than faces [24]. For example, reading trait-diagnostic statements, such as “she gave money to

charity”, engages the theory-of-mind (ToM) network more than trait-neutral statements such

as “she sharpened her pencil” [25–30]. The ToM network is engaged when attributing mental

states such as beliefs, desires and attitudes to others, as well as judging character and is thought

to be central to understanding social cognition [31, 32]. The ToM network is largely distinct

from the face perception network with key nodes covering temporoparietal junction, medial

prefrontal cortex, temporal poles and precuneus [31–33]. However, the potential role of the

ToM network in forming impressions based on facial appearance has not been studied in

depth. As such, the cognitive and neural systems that identify perceptual features and link

them to trait judgments are not well known [34]. The current study, therefore, investigates the

hypothesis that impression formation from faces relies on a distributed neural architecture

that spans the face perception and ToM neural networks.

In the current fMRI study, we addressed the extent to which face perception and ToM net-

works contribute to forming impressions based on facial appearance. The experiment used a

repetition suppression (RS) design [35, 36]. RS designs measure a reduced BOLD response fol-

lowing a repeated stimulus feature and a release from suppression following a novel stimulus

feature. Compared to conventional subtraction designs, which can show if a brain region

shows magnitude differences between conditions, RS studies hold the potential to study neural

processes at the level of neural populations within a given brain region. A brain region that

shows RS, therefore, can allow inferences about the organisation of underlying neural popula-

tions ([36]; Fig 1). We created face stimuli that cued high and low trait judgments and showed

these stimuli to participants in a sequence that created novel and repeated events. To identify

functional regions of interest, we used established face and ToM localiser tasks and to bolster

statistical power we used an analysis pipeline that has been demonstrated to exhibit high func-

tional resolution and sensitivity [37, 38]. If the face and ToM networks are engaged in forming

impressions based on facial features in the manner that we predict, we would expect to observe

repetition suppression for face traits in both networks.

Method

The Bangor University School of Psychology Ethics Committee approved the project on ethi-

cal grounds.

fMRI repetition suppression and trait judgments from faces
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Participants

Twenty-eight participants completed the experiment (14 female; Mage = 23.96, SD = 5.52). All

participants received a monetary reimbursement (£15), had normal or corrected-to-normal

vision and gave written informed consent in accordance with the Bangor University School of

Psychology Ethics Committee.

Fig 1. Method and design. A) Individual face images were transformed towards high and low composite templates of

trait variables (Extraversion, Agreeableness, Neuroticism, Physical health). The example shown is extraversion. The

images used are for illustrative purposes and were not used in the experiment. B) During scanning, each block began

with an instruction screen, which provided a statement and a reminder of the ratings scale. On each subsequent trial,

participants had to make a judgment based on the face presented. As such, all trials in a mini-block were from the same

category (e.g., extraversion), but all trials showed a different individual. C) An illustration of the population coding

model of face perception that the repetition suppression design was testing. High and low trait features are presented

in blue and green, respectively. Novel and repeated trials are presented in darker and lighter colours, respectively. The

individuals presented in this figure gave written informed consent for these images to be used.

https://doi.org/10.1371/journal.pone.0201237.g001
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Stimuli and experimental tasks

Stimuli. Face stimuli were initially selected from a face database created at Bangor Uni-

versity. The Bangor face database comprises photographs of participants with an emotionally

neutral expression and self-report measures of various personality and subclinical traits [22,

39, 40]. Individual images were extracted from the database and transformed along four per-

sonality or health dimensions (Extraversion, Agreeableness, Neuroticism and Physical Health).

These dimensions were chosen because prior work had shown that these dimensions were

readily identifiable in composite stimuli, which average faces across multiple identities [22].

All face transformations were performed in JPsychomorph [41]. Face stimuli were pro-

duced by transforming an original face image from the database towards an average template

of a high trait face (High Trait) or towards an average template of a low trait face (Low Trait).

Template faces were produced by creating a composite of the 15 individuals with the highest

or lowest ratings along each of the four dimensions. For example, for physical health, an aver-

age composite of the 15 most physically healthy individuals in the database was created as well

as an average composite of the 15 least physically healthy individuals. This process was

repeated for all four dimensions (Extraversion, Agreeableness, Neuroticism and Physical

Health). To avoid skin colour or make-up influencing the construction of composite images,

only individuals that were white and not wearing make-up were included. Also, to simplify the

design space, we only used images of female individuals.

Individual images were selected that were between those included in the high and low com-

posites and also met the above inclusion criteria (i.e., white females who were not wearing

make-up). Additionally, the individual in each image had provided consent that their individ-

ual face could be shown in later studies. The number of individuals fitting these criteria per

trait were: Extraversion = 54, agreeableness = 53, neuroticism = 56, physical health = 54, which

made a total of 217 IDs. Note that these were not unique IDs and most were used across traits.

An individual face image was then transformed in two ways: towards the high trait composite

image by 100% and towards the low trait composite image by 100% (Fig 1). A 100% transform

retains the identity cues of the original image whilst shifting the appearance by 100% of the

shape, colour, and texture difference between the high and the low composite images. This

produced two transformed images per original stimulus (High trait, Low trait), which made

434 images in total.

We transformed stimuli in this manner to exaggerate the distinctive facial features associ-

ated with particular trait characteristics, whilst maintaining a variety of facial identities by

using individual faces rather than composite images. We did not use composite face images, as

this would reduce the variety of identities presented during the scanning task, which may lead

participants to disengage. Indeed, we wanted to maintain interest in the stimuli and thus

encourage a ‘fresh’ social judgment on every trial and increasing variety of idiosyncratic facial

features and identities seemed a concrete way of doing so.

Pilot task. To assess the extent to which these stimuli would cue distinct trait judgments,

we ran a pilot behavioural experiment (see S1 Method). The pilot experiment demonstrated

that judgements of Low and High Extraversion, Neuroticism and Physical health were per-

ceived distinctly and as anticipated based on prior research ([22]; S2 Fig). However, there was

no difference in the perception of high and low agreeableness (S2 Fig). Prior work on agree-

ableness averaged multiple facial identities to create one composite image [22]. In the current

study, we used individual faces that had been transformed towards High or Low trait features.

Therefore, after the pilot study, it was unclear if the lack of distinct behavioural judgments

based on agreeableness was due to the method of stimulus construction. We decided to leave

the agreeableness stimuli in for the scanning experiment in order to see if the same pattern of

fMRI repetition suppression and trait judgments from faces
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results persisted in new participants and, if so, if there were neural effects in the absence of dis-

tinct behavioural judgments.

Main task. The main task used an event-related design with two types of face stimuli pre-

sented (High trait and Low trait faces). The design of the main task is illustrated in Fig 1. Each

run comprised 17 blocks of 9 trials. On every trial participants were shown a face and asked to

make a social judgement. At the start of each block, participants were shown a written state-

ment and a ratings scale for 4 seconds (1 = Strongly disagree, 2 = Disagree, 3 = Agree,

4 = Strongly agree). The task for participants was to rate how well the person matched the

statement. Each trial lasted 3s and participants were instructed to make a judgment based on

their initial reaction or “gut instinct”. The scale was always the same, but was included with the

statement before each block as a reminder. Participants responded on a button box within the

scanner by pressing the corresponding key. Between blocks a white cross was presented on a

black screen for a randomly selected duration of 2, 3 or 4 seconds.

Each block contained High and Low versions of stimuli from one category (e.g., Physical

Health) and each trial showed a different person. However, participants were not shown high

and low versions of the same person in the same category. Instead, participants were shown

either a high or a low version of an individual to avoid confusion with seeing the same person

transformed to opposite ends of a single dimension. Statements for each block related to the

category of stimuli presented in that block. For example, in a physical health block, partici-

pants made judgments based on statements concerning physical health. Four statements per

category were taken for Extraversion, Agreeableness and Neuroticism from the corresponding

scales of the mini-IPIP [42]. An example of an Extraversion statement is “Is the life of the

party”. For physical health judgements, items were used from the Short-Form 12-Item Health

Survey, which assesses physical health [43]. An example physical health statement is ‘‘Finds it

easy to climb the stairs”. The first block in a run was randomly selected as a starter block. Sub-

sequently, four blocks of each category were presented in a pseudorandom order such that

each block followed each other equally often.

Each block began with a starter trial, which was randomly selected from that category. The

next 8 trials were sequenced to achieve an even number of novel and repeated trials with novel

and repeated trials following each other equally often. Each trial was defined in reference to

the preceding trial. For example, a High trait trial that was preceded by a High trait trial would

be defined as a repeated trial, whereas a High trait trial that was preceded by a Low trait trial

would be defined as a novel trial. This design produced the two conditions of interest, which

were modelled as separate regressors in the general linear model: Novel_FaceTrait and Repea-

ted_FaceTrait. The starter trial was included as an additional regressor of no interest since the

trial was not preceded by any trial and therefore it was not comparable to the other trials. Each

trial was modelled from the onset of the first image for a nominal zero second duration. Across

a block there were four trials per condition and across a run there were 68 trials per condition.

Each participant completed two runs of the main task, which made 136 trials per condition

over the entire experiment. In addition, before entering the scanner, participants completed

two practice blocks of the main task.

Face localiser. To identify face-selective brain regions, we used an established face locali-

ser [9]. Five categories of stimuli were shown to participants (faces, bodies, scenes, objects,

scrambled objects), with one category per block. Each block lasted 18s and showed six 3s

movie clips from that category. A total of two blocks were shown in each functional run. At

the start, middle and end of each functional run, there was a rest condition for 18s. In the rest

condition, a series of six uniform colour fields were presented for 3s each. The order of blocks

was reversed from the first to the second bock (e.g., fixation, faces, objects, scenes, bodies,

scrambled objects, fixation, scrambled objects, bodies, scenes, objects, faces, fixation).

fMRI repetition suppression and trait judgments from faces
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Throughout all blocks, participants were instructed to watch the movies but were not given an

explicit task.

Theory-of-mind localiser. To localise brain regions associated with ToM, we used an

established ToM-localiser ([44]; http://saxelab.mit.edu/superloc.php). Participants read 10

short false belief stories, in which the belief characters have about the state of the world is false.

Participants also read 10 false photograph stories, where a photograph, map, or sign has out-

dated or misleading information. After reading each story, participants had to answer whether

the subsequently presented statement is true or false. Each run started with a 12 second rest

period, after which the stories (10 seconds) and questions (4 seconds) were presented for 14

seconds combined. Each story was separated by a 12 second rest period. The order of items

and conditions was identical for each subject. In the first run, stimuli 1–5 from each condition

were presented, and the remaining stimuli were presented during the second block. A verbal

theory of mind localiser was used to ensure that our results could compare easily to prior stud-

ies, which have identified brain regions associated with mental state reasoning.

Procedure. Participants completed two runs of the main task. Two additional functional

runs were also completed as part of another experiment–one run included a version of an imi-

tation inhibition task [45] and one run included a version of a flanker task [46]. These runs

occurred before each run of the main task in order to add variety and offset boredom. Subse-

quently, participants then completed one run of the face localiser and two runs of the ToM-

localiser. The ToM-localiser was always presented after participants had completed the main

task, to ensure that participants were not primed towards making trait inferences during the

main task. All participants completed an anatomical scan.

Data acquisition

The experiment was conducted on a 3 Tesla scanner (Philips Achieva), equipped with a

32-channel SENSE-head coil. Stimuli were displayed on a MR safe BOLD screen (Cambridge

Research Systems: http://www.crsltd.com/) behind the scanner, which participants viewed via

a mirror mounted on the head-coil. T2�-weighted functional images were acquired using a

gradient echo echo-planar imaging (EPI) sequence with the following parameters: acquisition

time (TR) = 2000 ms; echo time (TE) = 30ms; flip angle = 90˚; number of axial slices = 35; slice

thickness = 4mm; slice gap = 0.8mm; field of view = 230 x 230 x 167mm3. After the functional

runs were completed, a high-resolution T1-weighted structural image was acquired for each

participant (voxel size = 1 mm3, TE = 3.8 ms, flip angle = 8˚, FoV = 288 × 232 × 175 mm3).

Four dummy scans (4 � 2000 ms) were routinely acquired at the start of each functional run

and were excluded from analysis. 291 volumes per functional run were collected, except for

participant 1 where 288 and 289 volumes were collected in block 1 and 2 respectively.

Behavioural data analysis

During scanning, faces were rated on four dimensions in a similar manner to the pilot experi-

ment. The four dimensions included Extraversion, Agreeableness, Neuroticism and Physical

Health and the ratings scale ranged from 1 to 4 (1 = Strongly disagree, 2 = Disagree, 3 = Agree,

4 = Strongly agree). Ratings on each of these dimensions were compared between high and low

transformed stimuli. We expected high transformed stimuli to be rated in a manner that is

more consistent with descriptions of the trait category. For instance, based on prior work [22],

as well as our behavioural pilot data, we would expect stimuli transformed towards high physical

health to be rated in a manner consistent with higher physical heath. To compare high and low

transformed stimuli, we computed difference scores between high and low stimulus categories

fMRI repetition suppression and trait judgments from faces
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as well as interval estimates using 95% confidence intervals [47]. We also computed a paired-

samples t-test and a standardised effect size for each difference score (Cohen’s dz; [48, 49]).

fMRI data preprocessing and analysis

Preprocessing. Head motion was examined for each participant on each task, with an

exclusion criteria if displacement across either task exceeded 3 millimetres. We report for each

task how many runs or participants were removed for each experiment. fMRI data were ana-

lysed with Statistical Parametric Mapping software (SPM8; Wellcome Trust Department of

Cognitive Neurology, London, UK: www.fil.ion.ucl.ac.uk/spm/). Data were realigned,

unwarped, corrected for slice timing, and normalised to the MNI template with a resolution of

3mm3. Images were then spatially smoothed (5mm).

Analysis. We used spm_ss to perform our primary analyses ([37, 38]; http://www.nitrc.

org/projects/spm_ss). Spm_ss enables a subject-specific approach to fMRI data analysis. Like

other ROI approaches, functional regions of interest (fROI) are defined and tested in separate

data to ensure that the analyses are not circular [50]. The advantage of spm_ss is that it uses an

algorithm (or functional parcels from prior datasets) to define fROIs in a group-constrained

and subject-specific manner (GSS). This means that the approach benefits from showing

group consistency across participants, without requiring complete voxel-level overlap across

participants. As such, the approach integrates single-subject specificity within individuals with

group-constrained consistency across individuals.

We used GSS to define fROIs using separate localiser data. fROIs were first defined using

Face and ToM network localisers before we tested how these fROIs responded in our main

task contrasts of interest (RS FaceTraits). To do so, the following steps were taken. 1) Using

localiser data, we computed activation maps in individuals, thresholded these images

(p< 0.001, uncorrected) and overlaid them on top of one another. The resultant overlay map

contains information on the percentage of individuals that show an above threshold response.

2) The overlay map was then divided into regions by an image parcellation algorithm. 3) The

resulting regions are then investigated in terms of the proportion of subjects that show some

suprathreshold voxels. 4) Regions that overlap in a substantial number of participants (>50%)

are then interrogated using independent data (i.e., data from the main task). Statistical tests

across participants were performed on percent signal change values extracted from the fROIs

according to contrasts of interest.

Main task contrasts. For the fMRI data analysis of the main task, we computed our pri-

mary contrast of interest: RS Face Traits (Novel_FaceTrait > Repeated_FaceTrait).

Face localiser contrasts. Each block was modelled from the onset of the first trial for the

entire block (18 seconds). A design matrix was fit for each participant with five regressors per

block (Faces, Bodies, Scenes, Objects, Scrambled objects). To identify face-selective regions, a

Face> All baseline contrast was evaluated in individual participants (Dynamic Faces> Dynamic

Scenes + Objects + Scrambled Objects)

ToM localiser contrasts. A design matrix was fit for each participant with 2 regressors, one

for each experimental condition (false beliefs and false photographs). The ToM-network was

revealed by contrasting false beliefs with false photographs (False Beliefs> False Photographs).

Results

Behavioural data

During scanning, high trait faces were rated more consistent with trait characteristics than low

trait faces for extraversion t(27) = 10.88, p <0.001, dz = 2.06, neuroticism t(27) = 4.50, p<

0.001, dz = 0.85, and physical health t(27) = 3.73, p<0.001, dz = 0.71 (Fig 2). There was no

fMRI repetition suppression and trait judgments from faces
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difference between high and low trait faces for judgments of agreeableness t(27) = -0.33,

p = 0.63, dz = -0.06 (Fig 2). This pattern of results closely replicates our pilot data.

fMRI data. The GSS analysis using the face localiser data revealed nine regions where a

majority of participants showed a greater response to faces than all other baseline conditions.

Three of these regions are of particular interest given our predictions as they represent the

core face perception network. These regions include rOFA, rFFA and r STS/STG. None of the

three regions of interest showed RS for Face Traits estimated from data from the main task

(Fig 3A; Table 1). If we widen the search to all nine face responsive regions, we do not find RS

for Face Traits in any of the ROIs (S4 Table).

The GSS analysis using the ToM localiser data revealed nine regions where a majority of par-

ticipants showed a greater response to false belief stories than false photograph stories. Four of

these regions are of particular interest given our predictions regarding specific nodes of the

ToM network. These regions include rTPJ, mPFC and r anterior STG / temporal pole. None of

these regions showed RS for Face Traits estimated from data from the main task (Fig 3B;

Fig 2. Mean average face ratings during scanning. Error bars are 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0201237.g002

Fig 3. Percent signal change for novel compared to repeated trials in the face perception (A) and theory-of-mind

network (B). Error bars are standard error of the mean. Abbreviations: r = right; OFA = occipital face area; FFA = right

fusiform face area; pSTS = posterior superior temporal sulcus; TPJ = temporoparietal junction; mPFC = medial

prefrontal cortex; ant. Temp. = anterior temporal.

https://doi.org/10.1371/journal.pone.0201237.g003
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Table 1). If we widen the search to all nine regions from the ToM localiser, we do not find RS

for Face Traits in any of the ROIs (S4 Table).

As judgements of agreeableness showed no behavioural differences in perceptions of trait

character or health (Fig 2), we removed agreeableness blocks from the analysis, but the results

remained the same in both brain networks of interest.

Finally, we completed an exploratory whole-brain analysis, in order to test if regions outside

of the Face and ToM networks showed RS for Face Traits. Using SPM8, we calculated Novel>

Repeated Face Traits at the single subject level before completing a random effects analysis at

the group level using the same contrast. At the group level, no significant clusters of activity

were found (p< 0.001, K = 10, p<0.05 family wise error corrected). Even at a more liberal

threshold (p< 0.001, uncorrected for multiple comparisons), no clusters emerged from this

contrast. A further whole-brain and exploratory analysis was performed by comparing trials

with high trait feature faces to low trait feature faces. Again, even at a more liberal threshold

(p< 0.001, uncorrected for multiple comparisons), no clusters emerged from this contrast in

either direction (high > low; low > high).

Data from this experiment are freely available, including the behavioural and fROI data

(osf.io/7knrp), as well as data from the whole-brain analyses (https://neurovault.org/

collections/3168/).

Discussion

Here we show that faces readily cued accurate person judgments regarding extraversion, neu-

roticism and physical health, but the neural networks associated with face perception and

ToM showed no sensitivity in terms of repetition suppression to trait judgements. As such, we

do not provide evidence that supports population coding models of face perception that

include dimensions for high and low trait features in neural networks associated with face per-

ception or ToM. Due to aspects of the experimental design and analysis pipeline, which bol-

stered statistical power and sensitivity, we have reasonable confidence that we could detect

effects of a moderate size, should they exist. However, it remains possible that these regions are

sensitive to other trait dimensions of person perception such as trustworthiness or other types

Table 1. Main task ROI data.

Region Novel>Repeated

ROI size (voxels) Average localiser mask size (voxels) Inter-subject overlap (%) Percent signal change (SEM) t p(fdr)

Face localiser
Right OFA 412 84 93 -.005 (.19) -.03 .82

Right FFA 223 44 86 .067 (.17) -.41 .82

Right pSTS 143 24 75 -.127 (.17) -.73 .82

ToM localiser
Right TPJ 828 230 96 -.099 (.19) -.83 .80

Right temporal pole 115 22 82 -.054 (.06) -.88 .80

Right ant. temp cortex 225 58 93 .028 (.08) .34 .80

Anterior mPFC 50 8 57 .017 (.12) .15 .80

Abbreviations: ROI = Region of interest; fdr = false discovery rate; OFA = occipital face area; FFA = right fusiform face area; pSTS = posterior superior temporal sulcus;

TPJ = temporoparietal junction; mPFC = medial prefrontal cortex; ant. Temp. = anterior temporal.

Note: ‘ROI size’ is the total number of voxels in each ROI based on data from a face perception localiser or a theory-of-mind localiser. ‘Average localiser mask size’ is the

number of voxels that overlap in more than 50% of participants within each ROI. Right OFA, for example, consists of a 412 voxel ROI, with 84 voxels showing overlap in

93% of participants. Analyses were performed on the subset of voxels in each ROI that show overlap in a majority of participants (>50%).

https://doi.org/10.1371/journal.pone.0201237.t001
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of facial stimuli, such as synthetic stimuli. The null findings reported here, therefore, add value

to models of neural organisation by showing instances where effects are absent or small. In

addition, by publishing null results, we provide a less biased scientific record, one that future

studies can build upon by appropriately powering studies [51, 52]. Indeed, future work can use

these results to guide further interrogation of what is fundamentally an interesting scientific

and social question that relates to understanding the neural mechanisms associated with how

trait inferences are cued from facial appearance.

Understanding the neural basis of impression formation based on facial

appearance

The current experiment provides no evidence that populations of neurons in face perception

or ToM networks code for facial features that are associated with distinct trait judgements of

extraversion, neuroticism or physical health. Moreover, a whole-brain analysis showed no

effects in the amygdala or ventral striatum, which have previously been associated with social

evaluations of faces based on valence [15–19]. Observers were able to accurately discriminate

faces on the basis of the social trait being displayed for the majority of person dimensions.

However, we were unable to uncover the neural substrates for this discrimination. In particu-

lar, we could not find evidence for our hypothesis that brain regions representing features and

judgements for high traits might be separable from those representing low traits. Rather than

distinct populations of neurons in the same neural region coding for high and low trait fea-

tures and judgments, which a neural response consistent with RS would support [35, 36], the

results may suggest that face perception and ToM networks have a common neural parameter

that codes for the perceptual and judgement space under investigation. If so, the same neural

populations would be engaged on all trials, whether novel or repeated. For example, if the

same features of the face cue high and low judgements, they would be engaged equally on

novel and repeated trials. The ultimate judgment would differ between high and low trait

faces, but the underlying neural architecture would be similar. This proposal is speculative,

however, and would require further testing and confirmation.

An alternative possibility is that RS may not have been sensitive enough to detect the fine-

grained population coding structure that was tested. To bolster statistical power, we included a

large number of trials per condition for fMRI research (136), we tested 28 participants and we

used a single-subject analysis pipeline that has been shown to have relatively high sensitivity

and functional resolution in multi-subject analyses [38]. Nonetheless, RS may have been

smaller than we could detect with reasonable confidence. Future work may consider multi

voxel pattern analysis approaches [53], which have been shown to be more sensitive than RS

approaches in the domain of vision [54]. In addition, future work may consider the relation-

ship between face and ToM networks as prior functional connectivity research has shown that

the ToM network functionally couples with nodes of body perception network [55–57]. The

hypothesis that such future connectivity research could pursue is that the representation of

trait judgments from faces may span across face perception and ToM networks rather than

only within them.

Limitations and constraints on generality

In the current study, we do not show RS for trait inferences based on facial appearance. By

contrast, other work using written descriptions of behaviour, which imply trait inferences,

have shown that vental medial prefrontal cortex (vmPFC) shows RS for trait implying behav-

iours [25–27, 30]. Indeed, this work shows that vmPFC encodes trait representations for famil-

iar [26] and unfamiliar individuals [25], as well as for distinct traits such as valence and
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competence [30]. Therefore, it is important that we acknowledge relevant constraints on the

generality of our findings [58]. Our data, at least with the stimuli that we used, do not support

the view that vmPFC stores a person or trait code, which can be easily accessed or engaged

irrespective of the type of input (face or text). It could be that written text is simply a more

salient way to engage trait inferences, which could lead to the discrepant results. Alternatively,

it be might be that not all sources of input (face, text) or all types of person judgment (extraver-

sion, health, trustworthiness) are coded in a similar neural structure. Future work that directly

tests interactions between input type and judgment type would be valuable. Furthermore,

future work that considers the time course of stimulus presentation would be valuable as this

could be a contributing factor in determining sensitivity to detect repetition suppression

effects. Although prior fMRI repetition suppression work has used similarly short stimulus

presentation times and inter-stimulus intervals [59–61], it is an open question whether such

short time courses can be sensitive across different social and cognitive processes.

Of particular interest for future work would be to test judgments from faces that vary on a

valence / trustworthiness dimension [12]. In the current study, the behavioural data showed

that participants’ judgments did not distinguish between high and low agreeableness faces,

which is the closest dimension to valence / trustworthiness. However, participants were sensi-

tive to other dimensions, such as extraversion, neuroticism and physical health. Importantly,

recent models of social judgments from faces have shown that appraising faces has three partly

distinct dimensions including valence / trustworthiness, dominance and attractiveness [13].

Since judgments of physical health have been associated with attractiveness [62], our physical

health dimension closely resembles a key dimension in the person perception (attractiveness).

Therefore, it may be that health and attractiveness judgments, as well as some other types of

traits judgment (extraversion, neuroticism), are not coded in the same way as valence / trust-

worthiness judgments. Indeed, given the role of valence judgments in guiding approach and

avoidance behaviours, it may be that there is a more distinct neural architecture dedicated to

perceiving such traits.

In the current study, we used morphed images of real human faces. Our findings, therefore,

apply most directly to faces that look straightforwardly human. A complementary avenue for

future research would be to test models of trait inference from synthetic, computer-generated

facial stimuli. The advantage of using computer-generated stimuli would be tighter experimen-

tal control, which may boost the ability to detect effects of interest. The obvious disadvantage,

however, compared to the current approach of using real photographs, is the artificial limit

imposed on ecological validity [13]. Using synthetic images that produce more extreme facial

attributes, which differ from the average more, may be important, given research that shows

widespread neural responses to faces at high and low ends of continua [17, 18]. Indeed, even

though the majority of trait inferences showed reliable behavioural judgments, it is possible

that the similarity between our stimuli reduced the saliency of features that cue trait judg-

ments. Relatedly, we made sure that participants would not see stimuli morphed to different

traits in the same block in order to avoid confusion between identities and facial attributes.

But, by doing so, this may have made the distinction between high and low exemplars less

obvious. An alternative approach would be to show high and low version in the same blocks.

Open science and the file drawer problem

Since null results and smaller effect sizes are typically relegated to the file drawer [63], the cur-

rent literature has a publication bias, which prioritises statistically significant results and pro-

duces an overestimate of effect sizes. As such, null results from well designed and well powered

studies are important if the field is going to move towards a more precise estimate of
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population effect sizes. Without greater acknowledgement of the value of null results, artifi-

cially high estimates of effect sizes will continue to bias models of cognition and brain func-

tion, skewing the design of future research and resulting in misallocation of resources [64].

Indeed, as outlined above, a null result can make several important contributions to future

research [65]. First, replications and extensions can be powered to detect smaller effects or a task

can be changed to increase sensitivity. Second, other analysis methods, such as multi-voxel pattern

analysis or measures of connectivity [53, 66], may be prioritised as they may more closely capture

the information under investigation. Indeed, univariate region-of-interest analyses, which mea-

sure average activity across voxels in a given region, may be unable to capture the neural response

profile that underpins complex cognitive processes. As the data from this study are readily avail-

able in online open access repositories, we hope that future research can be guided by this work.
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a theory-of-mind localiser. ‘Average localiser mask size’ is the number of voxels that overlap in

more than 50% of participants within each ROI. Right MTG, for example, consists of a 200
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