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Simone Schütz-Bosbach,2 and Wolfgang Prinz1

1Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig,
Germany

2Independent Research Group Body & Self, Max Planck Institute for Human Cognitive and Brain
Sciences, Leipzig, Germany

3Department of Social and Cultural Psychology, Behavioural Science Institute, Donders Institute for
Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands

4School of Psychology, Bangor University, Wales, United Kingdom
5Movement Science Unit, Faculty for Sports and Health Science, Technical UniversityMunich, Germany

6Institute of Cognitive Neuroscience, University College London, United Kingdom

r r

Abstract: Linking observed and executable actions appears to be achieved by an action observation
network (AON), comprising parietal, premotor, and occipitotemporal cortical regions of the human
brain. AON engagement during action observation is thought to aid in effortless, efficient prediction of
ongoing movements to support action understanding. Here, we investigate how the AON responds
when observing and predicting actions we cannot readily reproduce before and after visual training.
During pre- and posttraining neuroimaging sessions, participants watched gymnasts and wind-up toys
moving behind an occluder and pressed a button when they expected each agent to reappear. Between
scanning sessions, participants visually trained to predict when a subset of stimuli would reappear.
Posttraining scanning revealed activation of inferior parietal, superior temporal, and cerebellar cortices
when predicting occluded actions compared to perceiving them. Greater activity emerged when pre-
dicting untrained compared to trained sequences in occipitotemporal cortices and to a lesser degree,
premotor cortices. The occipitotemporal responses when predicting untrained agents showed further
specialization, with greater responses within body-processing regions when predicting gymnasts’
movements and in object-selective cortex when predicting toys’ movements. The results suggest
that (1) select portions of the AON are recruited to predict the complex movements not easily
mapped onto the observer’s body and (2) greater recruitment of these AON regions supports
prediction of less familiar sequences. We suggest that the findings inform both the premotor model of
action prediction and the predictive coding account of AON function. Hum Brain Mapp 34:467–486,
2013. VC 2011 Wiley Periodicals, Inc.
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INTRODUCTION

In daily life, we interact with our environment by per-
ceiving, predicting, and responding to other people and
objects moving around us. For example, such simple tasks
as giving someone a high-five, stepping onto an escalator,
or holding open the door for a friend require behavioral
responses based on careful prediction of other bodies and
objects in motion. According to a dominant theory of
action understanding, we are able to respond to others’
actions by simulating their movements within sensorimo-
tor regions of the brain [Gallese and Goldman, 1998;
Grèzes and Decety, 2001; Rizzolatti and Sinigaglia, 2010].
In support of the simulation account, numerous studies
suggest that we accomplish such efficient prediction of
others’ actions by drawing upon prior motor experience
[Hommel et al., 2001; Jeannerod and Frak, 1999; Knoblich
and Flach, 2001; Neal and Kilner, 2010; Prinz and Rapinett,
2008]. However, it is often the case that we are confronted
with bodies or objects moving in ways we have never
physically experienced, for instance, when watching gym-
nasts in the Olympics or picking up a child’s wind-up toy
as it scoots away. If prior experience guides perception
and prediction processes, how is it possible to understand
and predict actions that are impossible to perform with
one’s own body? In the present study, we evaluate the
influence of visually based practice on the prediction of
complex action sequences with which participants have no
prior motor experience, by comparing behavioral perform-
ance and neural activity whilst predicting visually trained
and untrained actions.

The idea that action perception and production share
common representations has been around for many years
[Hommel et al., 2001; James, 1890; Prinz, 1990]. Recent
research that focused on identifying the neural substrates
that might serve to link action perception with production
in the human brain has found evidence for an action obser-
vation network (AON; Rizzolatti and Sinigaglia, 2010]. The
AON comprises parietal and premotor cortical regions,
which appear to code observed and executed actions in a
common space [Kilner et al., 2009; Oosterhof et al., 2010]
as well as occipitotemporal regions responsive to biologi-
cal motion and human body perception [Caspers et al.,
2010; Cross et al., 2009; Gazzola and Keysers, 2009; Grèzes
and Decety, 2001; Kilner et al., 2007a]. One intriguing hy-
pothesis put forth as to why sensorimotor brain regions are
engaged during action perception is that such activation
enables us to smoothly and effortlessly predict the ongoing
actions of others [Grush, 2004; Jeannerod and Decety,
1995; Kilner et al., 2004; Prinz, 2006; Schütz-Bosbach and
Prinz, 2007; Wilson and Knoblich, 2005]. Such a hypothesis
is intuitively appealing, given how critical prediction is for
interacting with other people and the environment and
thus, for survival [Sebanz and Knoblich, 2009].

The notion that prior motor experience aids in action
prediction has been convincingly demonstrated by a num-
ber of behavioral studies, in terms of both spatial [Kno-

blich and Flach, 2001] and temporal prediction [Graf et al.,
2007; Springer et al., 2011]. Although not studied as
widely, a handful of experiments provide evidence that
observational experience alone also confers benefits on
action prediction in a range of animal species, from pen-
guins to nonhuman primates [Chamley, 2003; Subiaul
et al., 2004]. Moreover, preliminary evidence with human
participants suggests that the sensorimotor regions of the
brain might be shaped by observational experience in a
similar manner to physical experience [Burke et al., 2010;
Cross et al., 2009], thus presenting the possibility that prior
experience with an action in either the visual or physical
domain can lead to improved action prediction.

To date, research investigating how an observer’s prior
experience influences prediction has focused almost exclu-
sively on simple, everyday actions and agents that are
similar or familiar to the observer [Graf et al., 2007; Prinz
and Rapinett, 2008; Stadler et al., 2011]. Returning to the
example of watching gymnasts in action or a child’s me-
chanical toy, how is it possible to predict these movements
when one has no prior physical experience performing
them? One intriguing hypothesis is that the premotor por-
tion of the AON, the same neural region engaged when
predicting familiar actions [Schubotz and von Cramon,
2003; Stadler et al., 2011], is also recruited to predict
ongoing dynamic events in general [Schubotz, 2007; Wolf-
ensteller et al., 2007]. According to this account, the pre-
motor cortex is recruited to aid in perception and
prediction of a much wider variety of dynamic events
ranging from complex events performed by humans, such
as expert feats of acrobatics, to events far removed from
our physical experience, such as the flight of a dragonfly,
or the rigid movements of a robot [Schubotz, 2007].

Another possible explanation for how brain regions sub-
serving action understanding and prediction might process
unfamiliar actions can be derived from the predictive cod-
ing account of the AON, based on empirical Bayes infer-
ence [Kilner et al., 2007a,b]. According to this model, the
AON functions to minimize prediction error through re-
ciprocal interactions among levels of a cortical hierarchy
comprising parietal, premotor, and occipitotemporal
regions [Gazzola and Keysers, 2009; Kilner et al., 2007b].
Whenever we observe an agent moving, our prior motor
and visual experience informs our expectations about how
that agent might move. The comparison between the
observer’s predictions of the agent’s movements (based on
prior visuomotor experience) and the observed action gen-
erates a prediction error. This prediction error is then used
to update our representation of the agent’s action. Accord-
ing to predictive coding, the optimal state is minimal pre-
diction error at all levels of the AON, which is achieved
when observed actions match with predicted actions as
closely as possible [Neal and Kilner, 2010; Schippers and
Keysers, 2011]. Thus, it might be expected that observing
unfamiliar actions would result in greater prediction error
(as evidenced by greater AON activity), while observing
familiar actions would generate a more efficient, finely
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tuned AON response. To date, however, this has not been
explicitly tested.

In the present study, we examine how the brain per-
ceives and predicts the motion of human and nonhuman
agents and ask whether perceptual experience alone can
influence prediction performance. We test this with a se-
ries of coordinated functional neuroimaging and behav-
ioral training methods, holding physical experience
constant (i.e., participants were naı̈ve to all action sequen-
ces before the study and could not physically perform the
actions at any stage of the study). We focus on perception
and prediction of two classes of actions: complex gymnas-
tic sequences (biological motion) and wind-up toy sequen-
ces (nonbiological motion)1.

With the present study, we investigate a declarative
form of temporal prediction, where participants’ task is to
watch a gymnast or toy move behind an occluding surface
and to press a button the moment they expect the gymnast
or toy to reappear. First, we measure prediction perform-
ance behaviorally across all testing and training sessions.
Second, we investigate how perception (when the agent’s
motion is directly observable) and prediction (when the
agent’s motion is concealed behind the occluder) of these
complex sequences compare at the neural level, in part to
determine whether the AON is more active during percep-
tion or prediction.

Third, we evaluate which brain regions are engaged
when predicting biological compared to non-biological
action sequences. If the AON confers special status to pre-
dicting the human body in motion [Buccino et al., 2004;
Shimada, 2010; Tai et al., 2004], then we might expect to
see greater activation within all or some nodes of this net-
work when perceiving gymnasts compared to toys. Such a
finding would suggest agent-specificity of prediction
mechanisms, even when all actions are impossible to per-
form. Alternatively, more general prediction mechanisms
that are adaptable to any kind of dynamic event sequence
might support a hypothesis of fewer or no differences
when predicting gymnasts or toys [Schubotz, 2007; Schu-
botz and von Cramon, 2004].

Finally, we evaluate whether brain regions within or
beyond the AON are responsive to purely visual training,
collapsed across agent. Although no single theoretical
framework exists upon which we can base hypotheses for
these findings, it is nonetheless possible to speculate on

possible patterns of findings based on several studies from
the action perception literature. Specifically, if frontal com-
ponents of the AON are responsive to purely visual expe-
rience, as prior work has demonstrated for executable
actions [Burke et al., 2010; Cross et al., 2009], we would
expect to see changes within premotor regions based on
the visual training manipulation. However, it is equally
plausible that visual experience will lead to changes only
within the visual nodes of the AON and not anterior
motor regions, because participants have no physical expe-
rience or ability to perform the observed actions [Cross
et al., 2010]. In this case, occipitotemporal cortices might
be the most sensitive to visual experience, in line with a
predictive coding model proposed by Kilner et al. [2007b].

METHODS

Participants

Twenty-four participants were recruited to take part in 4
days of behavioral training and two functional neuroimag-
ing scans (one pretraining scan and one posttraining scan,
Fig. 1). All participants were free of neurological or psy-
chiatric diagnoses, and none was taking any medication at
the time of the measurements. All participants provided
written informed consent and were paid for their partici-
pation. They were treated according to the ethical regula-
tions outlined in the Declaration of Helsinki, and the local
ethics committee approved all fMRI procedures. Two par-
ticipants were excluded from the final sample due to ex-
cessive motion artifacts in the fMRI data. The final sample
comprised 13 men and 9 women (mean age, 26.4 years;
range, 23.0–32.8). All participants were strongly right
handed as measured by the Edinburgh Handedness Inven-
tory [Oldfield, 1971].

Stimuli

Stimuli comprised 32 videos featuring different agents
moving across the screen from left to right. Sixteen videos

Figure 1.

Schematic depiction of the three phases of this study, chronolog-

ically arranged. All participants completed two fMRI sessions and

four days of behavioral training, with each training session sepa-

rated by �48 h.

1It should be noted that neither class of action featured goal-directed
hand actions, like those typically used in many experiments that
have examined the role of the AON in action perception and predic-
tion. Here, we were specifically interested in studying actions for
which participants had no prior motor experience, and full-body
actions, where the agent’s goal is simply to move from one side of
the space to the other, offer a broader range of options for this pur-
pose. Moreover, a number of empirical studies [e.g., Cross et al.,
2006; 2009; in press; Lui et al., 2008; Munzert et al., 2008; Zentgraf
et al., 2005] and a recent meta-analysis [Caspers et al., 2010] support
the notion that the AON is also strongly engaged by observing non-
object-directed actions.
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featured wind-up toys that moved autonomously across a
neutral background. Individual toys were chosen that skit-
tered, hopped, spun, or crept rather than simply moving
in a smooth, straight trajectory, in order to make the pre-
diction task more challenging. The remaining 16 videos
featured three different expert female gymnasts perform-
ing complex gymnastic sequences across a neutral gymna-
sium space. The time of each video ranged from 3.2 to
18.8 s, and no differences in average duration existed
between the wind-up toy videos (M ¼ 8.36) and the gym-
nastic videos (M ¼ 7.18), t ¼ 0.76, P ¼ 0.45. All videos
were presented in full color with a resolution of 480 � 270
pixels and a frame rate of 25 frames per second.

From these original 32 videos, 128 new video compo-
nents were constructed to create the prediction video stim-
uli. Two prediction videos with occlusions of different
lengths were constructed from original video: one with a
short occlusion duration, that is, using a narrow black rec-
tangular occluder measuring 4.2 � 2.3 cm, and one with a
long occlusion duration, that is, a wider occluder meas-
uring 4.2 cm � 3.4 cm. The left edge of the occluder was
placed in the identical spatial location for both the long
and short occlusion videos, corresponding to 4.5 cm from
the left edge (or start) of the video. Each agent moved
from left to right and spent a variable amount of time
moving across the screen before disappearing behind the
occluder, ranging from 1.76 to 11.42 s, and stayed behind
the occluder between 0.5 and 8.5 s.

Because participants’ task was to accurately predict
when each agent should reappear from behind the occlud-
ing surface (via a button press), the videos required fur-
ther manipulation to make this task possible. Each of the
new 64 videos with the occluding black rectangles was
edited to artificially lengthen the segment in which the
agent was occluded by three beyond the actual time when
the agent should reappear. This meant that if participants
were very late in their estimates of how long an agent
should be behind the occluder, the task would still con-
tinue uninterrupted. Once participants made a button
press indicating the point in time they thought the agent
should reappear, a second video immediately began play-
ing: the continuation of the first video, with the starting
points set to the moment any part of the agent reemerged
from behind the occluding surface. This procedure was
applied to all 64 videos, so that in each trial, participants
experienced one smooth video, wherein the gymnast or
toy disappeared behind the occluder (video 1), and as
soon as the participant made a button press, the agent
reappeared from behind the occluder and continued mov-
ing until off screen (video 2).

Study Design

The experimental conditions fall into a 2 (agent type:
human or toy) by 2 (observational training experience:
trained or untrained) factorial design, illustrated in

Figure 2. During the first imaging session, all 32 sequences
(one exemplar of each agent/action, with only the wide
occluding surface present) observed during scanning were
novel to the participants. During the second imaging
session, participants viewed eight trained gymnast sequen-
ces, eight trained wind-up toy sequences, eight untrained
gymnast sequences, and eight untrained wind-up toy
sequences.

Neuroimaging

Neuroimaging procedure

An event-related design was used to identify responses
to predicting the occluded actions of toys and gymnasts in
identical pretraining and posttraining fMRI sessions. Dur-
ing functional imaging, all videos were presented via Psy-
chophysics Toobox 3 running under Matlab 7.2. In the
scanner, participants viewed videos via a back projection
system, in which a mirror installed above participants’
eyes reflected an LCD projection onto a screen behind the
magnet. Participants predicted the same 32 different toy
and gymnast sequences during the pretraining and post-
training scanning sessions. Instructions were to observe
each video, to imagine the movement of the agent continu-
ing behind the black occluding surface, and to press a but-
ton held in the right hand at the precise moment the agent
should reappear from behind the occluder. As soon as par-
ticipants pressed the button, the video appeared to con-
tinue to play, with the agent reappearing from behind the
occluder and continuing off the right side of the screen.
No feedback was given during the scanning sessions. Par-
ticipants completed a total of 160 trials (five instances of

Figure 2.

Two (Agent: Human or Wind-up Toy) by two (perceptual expe-

rience: Trained or Untrained) factorial design of study.
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each of the 32 stimuli), and each stimulus video was sepa-
rated by a fixation cross of 2–12 sconds in duration, pseu-
dologarithmically distributed. Because of the variation of
stimuli duration, the effective range of jittering between
the onset of each video and the moment an agent disap-
peared entirely behind the occluder ranged from 2.12 to
8.70 s.

Scanning was performed on a 3 Tesla MRI scanner (Sie-
mens TRIO, Germany). For functional measurements, a
gradient-echo EPI sequence was used with TE ¼ 30 ms,
flip angle 90�, TR ¼ 2 s, and acquisition bandwidth 100
kHz. The matrix acquired was 64 � 64 voxels, FOV 19.2
mm, in-plane resolution 3 � 3 mm. Twenty-two axial sli-
ces allowing for full-brain coverage were acquired (slice
thickness ¼ 4 mm and interslice gap ¼ 1 mm) in an inter-
leaved fashion. Depending on participants’ prediction per-
formance and the length of the randomly assigned rest
trials, the total number of functional scans collected per
participant ranged between 1,080 and 1,305, with 1,174
being the average number of scans collected per partici-
pant per scanning session. Geometric distortions were
characterized by a B0 field-map scan, consisting of a gradi-
ent-echo readout (32 echoes, interecho time 0.64 ms) with
a standard 2D phase encoding. The B0 field was obtained
by a linear fit to the unwarped phases of all odd echoes.
For registration, T1-weighted modified driven equilibrium
Fourier transform imagers were obtained before the func-
tional runs. Additionally, a set of T1-weighted spin-echo
EPI images was taken with the same geometrical parame-
ters and the same bandwidth as used for the fMRI data.
For anatomical data, a T1-weighted 3D magnetization-pre-
pared rapid gradient echo sequence was obtained.

Neuroimaging analyses

The neuroimaging analyses were designed to achieve
four objectives. First, we wanted to determine which brain
regions were more strongly activated when perceiving
compared to predicting complex actions that are not read-
ily mapped on to the observer’s body, and which brain
regions were more strongly activated by prediction com-
pared to perception. Next, we sought to identify regions
that demonstrated an interaction in BOLD signal from the
pretraining to the posttraining scan session, based on
training experience or the type of agent whose movement
was being simulated during occlusion. The third set of
analyses focused on regions that were sensitive to the
main effects and interactions of agent type and training ex-
perience within our 2 � 2 factorial design during the pre-
diction phase of the posttraining scan session. Finally, we
aimed to further explore the main effects of training dur-
ing action prediction by evaluating the simple effects of
training within each class of agent.

To accomplish these objectives, data from both scan ses-
sions were separately corrected for slice timing, realigned,
unwarped, normalized to individual participants’ T1-seg-
mented anatomical scans with a resolution of 3 mm � 3

mm � 3 mm, and spatially smoothed with a resolution of
8 mm using SPM8 software. A design matrix was fitted to
for each scanning session of each subject independently,
with eight regressors of interest. Events with 0 s duration
were fitted for each of the four video types in the factorial
design: (to be) trained gymnasts and toys and (to be)
untrained gymnasts and toys, at two different points in
each video: when the video began, and when the agent
was first fully occluded behind the black box. To avoid
false positives in direct comparisons, all main effects were
evaluated with the conjunction of A > B with A [Nichols
et al., 2005]. All neuroimaging analyses were evaluated in
whole-brain analyses at a voxel-wise threshold of P <
0.001 uncorrected, k ¼ 10 voxels. Corrections for multiple
comparisons were performed at the cluster level using P <
0.05, FDR-corrected [Friston et al., 1993]. In the Results sec-
tion, we focus on brain regions that reached cluster-cor-
rected significance (FDR cluster-corrected P < 0.05) for the
main and simple effects and uncorrected results for the
interactions. The tables list all activations significant at the
P < 0.001 uncorrected, k ¼ 10 voxels threshold.

To most clearly illustrate all fMRI findings, t-images
from cluster-corrected activations only are visualized on a
participant-averaged high-resolution anatomical scan. Pa-
rameter estimates (beta values) were extracted and plotted
for visualization purposes only for those regions that
reached a significance level of P < 0.05 FDR-corrected for
all main and simple effects and P < 0.001 for the interac-
tions. Anatomical localization of all activations was
assigned based on consultation of the Anatomy Toolbox in
SPM [Eickhoff et al., 2005, 2006], in combination with the
SumsDB online search tool (http://sumsdb.wustl.edu/
sums/).

Behavioural training and evaluation

Between pre- and posttraining fMRI sessions, partici-
pants came into the behavioral testing laboratory for four
perceptual training sessions, each lasting 45 min. Each per-
ceptual training session was separated by �48 h (range,
42–54 h). For ease of training, four distinct sets of the ex-
perimental stimuli were constructed, so that across partici-
pants, different assemblies of eight gymnast and eight toy
sequences would be trained while another eight gymnast
and eight toy sequences would be untrained. The four dif-
ferent training stimuli sets were pseudorandomly
assembled: care was taken, so that videos of a variety of
lengths composed each training set and that no significant
differences existed between video lengths between sets (all
P-values > 0.80). Participants were randomly assigned to
one of four training sets and practiced the prediction task
on the same eight gymnastic sequences and eight toy
sequences each day of training.

During each of the four training sessions, participants
sat alone in a quiet laboratory testing room and practiced
the action prediction task on a desktop computer running
Psychophysics Toolbox 3 in Matlab 7.2. During all 4 days
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of training, participants practiced the action prediction
task. As in the fMRI version of the task, participants were
again instructed to attend closely to each video and to
press the space bar on a computer keyboard when they
thought the agent should reappear from behind the
occluding box; however, during behavioral training, par-
ticipants also received feedback on their performance
(Fig. 3). Feedback consisted of one of four different cartoon
symbols expressing different valences (red X, neutral face,
smiley face, and very enthusiastic smiley face). If partici-
pants did not receive the most positive face as feedback,
they saw an additional cartoon next to the valenced sym-
bol, which was either a tortoise (if their prediction time
was too slow) or a hare (if their prediction time was too
fast). This response scale was carefully explained to partic-
ipants before behavioral training began, and a printed
sheet explaining each of the possible feedback combina-
tions was placed next to the testing computer during the
first day of training in case participants wished to consult
it. On the third day of training, participants also passively
watched each of the 32 videos just once with no occluder
present. This was done in order to familiarize participants
with how each video ran in its natural, unaltered, and
unoccluded state.

To make the training task more difficult and motivating,
participants’ performance had to become increasingly
more accurate across the days of training in order to elicit
the same degree of feedback. To get the most positive
feedback on the first day of training, participants had to
predict the correct reemergence time within �0.25 s. If pre-
diction time was ��0.50 s of accurate reemergence, they
received positive feedback, if � �0.75 s, neutral feedback,
and if off by >�0.75 s, negative feedback. Across each day
of training, the feedback thresholds decreased by 0.05 s
per time bin, so that by the fourth and final day of testing,
the most positive feedback was given when prediction ac-
curacy was �0.10 of actual occlusion time, positive feed-

back for ��0.35 s, neutral feedback for ��0.60 s, and
negative feedback for >�0.60 s.

Prediction values for each trial, during pre- and post-
training fMRI sessions and during the behavioral training
sessions, were calculated as mean deviation from actual
time the gymnast or toy should reappear from behind the
occluding surface. A signed mean prediction score was
calculated for each participant for each agent class (posi-
tive values indicate prediction slower than reality; negative
values indicate prediction faster than reality). Prediction
scores for the long and short occlusion trials were col-
lapsed into one value for each of the 4 days of behavioral
training. Two sets of analyses were performed on the be-
havioral prediction data. First, the data were submitted to
a 2 (agent type) � 6 (testing day: prescan; training days
1–4; postscan) repeated measures ANOVA. For this analy-
sis, only trials from the trained (or to-be trained) categories
were analyzed from the fMRI sessions. To compare spe-
cific effects of the training manipulation, a 2 (agent type)
� 2 (training experience) � 2 (scanning session) repeated-
measures ANOVA was run on the prediction data from
just the fMRI sessions.

RESULTS

Behavioral Training Results

Participants’ performance was measured by their ability
to accurately predict the correct time the human or wind-
up toy agent should reappear from behind the occluder.
The first analysis, quantifying prediction performance
across all 6 days of the experiment involving the same
stimuli, demonstrated a main effect of agent, with partici-
pants predicting gymnasts’ reappearances more accurately
than toys’, F1,21 ¼ 8.97, P ¼ 0.007. A main effect of day
also emerged, with participants prediction performance
increasing across days, F1.5,32.2 ¼ 8.72, P ¼ 0.002. In

Figure 3.

Example still images from both classes of video stimuli. For both

fMRI sessions and the behavioral training sessions, participants’

task was to watch videos of expert gymnasts (A) and wind-up

toys (B) moving across the screen from left to right and to press

a button at the point in time when they believed the agent

should reappear from behind the occluder, indicated by the

orange arrows. Upon pressing the button, the agent reappeared

and continued moving off screen. Participants then received

symbolic feedback concerning the accuracy of their performance

(see main text).
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addition, an interaction was present between agent and
day, with prediction performance improving more mark-
edly for the wind-up toys compared to the gymnasts,
F2.7,57.2 ¼ 16.04, P < 0.001. These results are illustrated in
Figure 4A.

The second analysis took into account the effects of
training and agent type across scanning sessions. Note
that training experience for the pretraining scan is an arti-
ficial construct: at this stage, all stimuli are equally novel,
and no effects of to-be-assigned training category were
manifest (P ¼ 0.40). A repeated-measures ANOVA includ-
ing the factors scanning session (pretraining vs. posttrain-
ing), agent (gymnast vs. toy), and training (trained vs.
untrained) revealed a main effect of session, with partici-
pants’ prediction errors decreasing across scanning ses-
sion, thus reflecting a general increase in accuracy, F1,21
¼13.47, P ¼ 0.001. These results are illustrated in Figure
4B. A main effect of agent similar to the one from the first
analysis also emerged, whereby participants were gener-
ally more accurate at predicting gymnasts’ actions than
the wind-up toys’, F1,21 ¼ 24.23, P < 0.001. Finally, an
interaction emerged between scanning session and agent,
reflecting here again greater improvements in prediction
between the pretraining and posttraining scan sessions for
the wind-up toys compared to the gymnasts, F1,21 ¼ 40.36,
P < 0.001. Importantly, there was no interaction between
scanning session and training, providing evidence for a
high degree of learning that generalized from the trained
to the untrained stimuli. This is further substantiated by

an exploratory 2 � 2 repeated-measure ANOVA run on
the behavioral data from the postscanning session only.
This analysis revealed no main effects or interactions
between agent and training, demonstrating that prediction
for both classes of agent, regardless of training experience,
was equivalent by the posttraining fMRI session. Therefore,
any effect that might emerge between agent or training ex-
perience in the brain data from the posttraining scanning
session is not readily attributable to discernable differences
in prediction accuracy between classes of stimuli.

Imaging Results

Effects comparing perception and prediction

By modeling two time points of interest within each stim-
ulus video, we established perception events (when the
gymnast or toy was visibly moving across the screen) and
prediction events (when participants were actively imagin-
ing the continued movement of the agent behind the
occluder). When comparing action perception to action pre-
diction, a network of visual and motor regions was more re-
sponsive, including calcarine cortex centered on V2, and
bilateral clusters spanning the precentral and superior fron-
tal gyri, corresponding to the frontal eye fields and supple-
mental motor area (SMA). In addition to these regions,
more anterior portions of the frontal lobe showed compara-
tively greater activation, including a midline activation
spreading to bilateral medial prefrontal cortex and a portion

Figure 4.

Panel A illustrates behavioural data from the pre- and post-train-

ing scanning sessions as well as the four days of visual training

wherein participants practiced the prediction task on a subset of

stimuli. The bars in Panel A represent participants’ performance

on the same set of stimuli across all days of the study (i.e., per-

formance on the same 16 stimuli that were untrained and novel

during Scan 1 is plotted throughout the course of the whole

study). Panel B illustrates participants’ performance on the 16

stimuli that were to be trained and the 16 that were to remain

untrained during Scan 1 and performance on those same stimuli

after training during Scan 2. Across both figures, blue bars cor-

respond to performance on gymnast videos, red bars are per-

formance on wind-up toy videos, and the y-axis depicts the

mean deviation from each agent’s actual reappearance from

behind the occluder in seconds. Error bars represent standard

error of the mean. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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Figure 5.

Comparison of action perception and prediction during post-

training fMRI session. Group averaged statistical maps (n ¼ 22)

show regions more responsive when observing an agent move

across space compared to imagining the agents’ actions once

they have moved behind the occluder (A), and those regions

more responsive when actively imagining agents’ movements in

order to predict the precise time of reappearance from behind

the occluder (B). Note that during the prediction condition, no

movement or agent is observed on the screen. T-Maps are

thresholded at t > 4.01, and the bar graphs illustrate the para-

meter estimates in the clusters that reached a thresholding value

of P < 0.05, FDR-corrected, for perception (left side of each

plot) and prediction (right side of each plot).
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TABLE I. Main effects of perceiving a moving agent and predicting the time course of an occluded

agent from post-training scan session

Anatomical
region BA

MNI coordinates Putative
functional

name t-Value
Cluster
size

Pcorrected

valuex y z

Perception > Prediction

L calcarine cortex 18 �9 �91 �5 V2 10.2 2306 <0.001

R fusiform gyrus 37 33 �46 �17 9.7 <0.001

L calcarine gyrus 18 �6 �94 �11 V2 8.8 <0.001

L middle frontal gyrus 8/9 �27 35 49 MFG 7.5 168 0.004

L middle frontal gyrus 8 �24 29 55 MFG 7.0 0.004

L superior frontal gyrus 9 �9 65 22 SFG 6.0 0.004

L sup. frontal gyrus 6 �18 �1 55 SMA 6.5 221 0.001

L inferior frontal gyrus (pars opercularis) 6 �42 2 25 PMv 5.9 0.001

L precentral gyrus 6 �33 �7 46 5.0 0.001

R precentral gyrus 4 39 �7 46 FEF 5.7 112 0.019

R middle frontal gyrus 6 51 �4 52 MFG 5.2 0.019

R precentral gyrus 4/6 48 �19 61 5.0 0.019

R middle cingulate gyrus 31 15 �22 43 5.7 29 0.331
Medial orbital gyrus 10 0 56 �11 mPFC 5.5 216 0.001

R rectal gyrus 11 3 47 �17 5.2 0.001

L middle cingulate cortex 24 �9 �19 37 5.4 29 0.331
R middle temporal gyrus 37 42 �64 7 MTG 4.9 40 0.217
R middle temporal gyrus 39 54 �73 13 MTG 4.6 0.217

R inferior parietal lobule 2 30 �43 52 IPL 4.3 11 0.660
Prediction > Perception
R inferior parietal lobule 40 57 �37 49 IPL 9.0 784 <0.001

R supramarginal gyrus 7/40 48 �43 43 IPL 8.9 <0.001

R supramarginal gyrus 40 60 �43 40 IPL 8.7 <0.001

L insula 52 �42 11 �8 8.1 5077 <0.001

R sup. temporal gyrus 22 24 �34 10 STS/STG 7.2 <0.001

L putamen �27 �7 1 7.1 <0.001

L inferior parietal lobule 40 �60 �49 37 IPL 7.8 284 <0.001

L inferior parietal lobule 40 �48 �46 55 IPL 5.5 <0.001

L inferior parietal lobule 2 �54 �28 49 S1 4.3 <0.001

R middle frontal gyrus 9 39 38 28 MFG 6.9 557 <0.001

R inferior frontal gyrus (pars orbitalis) 11 42 44 �5 IFG 6.9 <0.001

R middle frontal gyrus 9 36 44 16 MFG 6.6 <0.001

L cerebellum lobule V �6 �49 �26 6.4 249 <0.001

R cerebellum lobule VI 18 �55 �26 5.5 <0.001

R cerebellum lobule VI 12 �58 �17 5.4 <0.001

L middle frontal gyrus 10 �39 47 10 MFG 5.6 60 0.077
L intraparietal sulcus 7 �21 �55 31 IPS 4.9 12 0.475
L middle occipital gyrus 18 �30 �97 �5 4.7 36 0.183
L cerebellum lobule VIIa �18 �91 �23 4.5 0.183
L lingual gyrus 18 �24 �97 �17 4.3 0.183

L cerebellum lobule VIIa �33 �73 �29 4.6 62 0.077
L cerebellum lobule VIIa �45 �67 �29 4.5 0.077

R superior occipital gyrus 17 21 �91 7 V2 4.2 22 0.322
R calcarine gyrus 17 12 �88 �2 V2 4.0 0.322

R superior frontal gyrus 9 21 59 22 SFG 3.9 20 0.324
R superior frontal gyrus 9 21 44 22 SFG 3.7 0.324

MNI coordinates of peaks of relative activation within regions more responsive to perceiving a moving agent compared to predicting
an occluded agent (a), and more responsive to predicting an occluded agent compared to perceiving a moving agent (b), collapsed
across training experience and agent type. Results were calculated at Puncorrected < 0.001, k ¼ 10 voxels and inclusively masked by the
perception only or prediction only compared to baseline, respectively. Up to three local maxima are listed when a cluster has multiple
peaks more than 8 mm apart. Entries in bold denote activations significant at the FDR cluster-corrected level of P < 0.05. A selection of
regions that reached cluster-corrected significance are illustrated in the figures. Abbreviations for brain regions: V2, visual area V2/pres-
triate cortex; MFG, middle frontal gyrus; SFG, superior frontal gyrus; SMA, supplementary motor area; PMv, ventral premotor cortex;
FEF, frontal eye fields; mPFC, medial prefrontal cortex; MTG, middle temporal gyrus; IPL, inferior parietal lobule; STS, superior tempo-
ral sulcus; STG, superior temporal gyrus; S1, primary somatosensory cortex; IFG, inferior frontal gyrus; IPS, intraparietal sulcus.



of the left middle frontal gyrus. Figure 5A illustrates the
peaks of each cluster-corrected activation, and Table I lists
all regions emerging from this contrast. To more fully illus-
trate this activity, cortical renderings are visualized in Fig-
ure S1.

The inverse contrast revealed regions that were more
active during action prediction compared to perception.
Activations from this contrast appeared within bilateral in-
ferior parietal lobules, the superior temporal gyrus, the cere-
bellum, and anterior portions of left middle frontal gyrus
that extend into mesial areas (i.e., the supplementary and
pre-supplementary motor areas). The peaks of cluster-cor-
rected activations from this contrast are illustrated in Figure
5B, and Table I lists all regions (cluster-corrected and uncor-
rected) that emerged from this contrast. Beneath activations
maps for both contrasts, parameter estimates depicting beta
values for prediction and perception for each region are
presented for illustration purposes only. To further explore
the relationship between perception and prediction, each

condition was also evaluated against the implicit baseline.
Individual regions emerging from these contrasts are listed
in Table SI, and the conjunction of these contrasts, broken
down by training experience, is illustrated in Figure 6.

Interactions between pre/posttraining scanning sessions
with main factors

The first statistical interaction tested for brain regions
showing a stronger response in the first scanning session
when predicting actions that will be trained compared to
untrained, and a stronger response in the second scanning
session when predicting actions that were untrained
compared to trained. This analysis revealed modulation
of bilateral inferior temporal gyri, the left supplementary
motor area, and the right middle temporal gyrus. The
parameter estimates illustrated beneath the neural activa-
tions in Figure 7A reveal that the marked differences
between the untrained and trained sequences in the

Figure 6.

Combined visualization of perception only (red), prediction only

(green), and overlap between perception and prediction (yellow)

during the post-training scan session, separated by trained stim-

uli and untrained stimuli (left and right panels of the figure,

respectively). The conjunction analysis highlights those regions

where both the prediction > implicit baseline and perception >
implicit baseline contrasts, for trained or untrained stimuli,

passed the cluster-corrected significance threshold of t > 4.5,

P < 0.05, FDR-corrected.
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posttraining scan session appear to be driving this effect
in each region, as would be anticipated, because all stimuli
should be equally unfamiliar/untrained during the pre-
training scan session. The inverse interaction did not
reveal any suprathreshold activations (see Table II for
details of training week by training experience
interactions).

The next interaction contrasts assessed those regions
that showed an interaction between training week and
agent form. One cluster emerged from this contrast, within
the angular gyrus of the inferior parietal cortex. Examining
the parameter estimate plot in Figure 7B, it appears that
during the pretraining scan session, this region responded
much more strongly to predicting gymnasts than wind-up
toys, while during the posttraining session, the differentia-
tion between agent forms shown in this region’s responses
was attenuated. The inverse interaction revealed no supra-
threshold activations (see Table II for details of training
week by agent interactions).

Prediction-specific main effects

We next examined the main effects of the factorial
design from the prediction portion only of the posttraining
fMRI session. The main effect comparing prediction of
gymnasts compared to toys (collapsed across training ex-
perience) revealed bilateral activation of clusters spanning
the middle and inferior occipitotemporal cortex. The cen-
ters of both clusters are very near to the part of occipito-
temporal cortex previously identified as extrastriate body
area (EBA; Fig. 8, Table III). A third cluster more respon-
sive to predicting gymnasts than toys emerged within the

left middle occipital gyrus. The inverse contrast revealed
no activations that reached cluster-corrected significance
responding more strongly to predicting wind-up toys than
gymnasts. However, uncorrected results from this contrast
are listed in Table III for completeness.

We then evaluated the main effects of training on pre-
diction, collapsed across both classes of agent. The analysis
comparing brain regions more active when predicting
trained compared to untrained stimuli did not reveal any
suprathreshold clusters of activation. This signifies that no
brain regions were more active when imagining those
stimuli participants had spent 4 days learning to predict.
Given that previous experiments have reported modula-
tion of parietal and premotor components of the AON
based on visual experience [Cross et al., 2009], we per-
formed an exploratory ROI analysis to determine whether
these regions might show modulation based on visual
training when a more targeted approach was used. Two
10 mm spheres were generated based on coordinates
reported previously [Cross et al., 2009] in the right premo-
tor cortex (x ¼ 36, y ¼ 6, z ¼ 51) and the left inferior parie-
tal lobule (x ¼ �36, y ¼ �51, z ¼ 36). Even when focusing
on regions previously shown to be modulated by visual
experience, this exploratory ROI analysis did not reveal
any modulation of parietal and premotor components of
the AON.

However, the inverse contrast revealed two large supra-
threshold clusters centered on the left inferior temporal
gyrus and the right superior temporal gyrus. These
regions were more active when predicting untrained com-
pared to trained stimuli, signifying the recruitment of
additional neural resources to perform the same task for

Figure 7.

Panel A illustrates the interaction between training week (pre-

training; posttraining) and training experience (trained;

untrained). Panel B illustrates the interaction between training

week (pretraining; posttraining) and agent (gymnasts; toys).

T-Maps are thresholded at t > 3.53. The bar graphs illustrate pa-

rameter estimates from all clusters that reached a significance

value of p (uncorrected) < 0.001. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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less familiar stimuli. The right panel of Figure 8 and Table
III depicts these findings.

Prediction-specific interactions

As evaluation of the prediction-specific interactions between
training experience and agent did not reveal any clusters signif-
icant at the P < 0.001, k ¼ 10 voxel threshold, we investigated
whether any clusters in the brain did show an interaction
between these factors at a lower statistical threshold of P <
0.01, uncorrected, k ¼ 10 voxels. The first direction of the inter-
action (trained gymnasts þ untrained toys) > (untrained gym-
nasts þ trained toys), revealed activation within the middle
frontal, middle temporal, and posterior cingulate cortices. The
inverse direction of the interaction (untrained gymnasts þ
trained toys) > (trained gymnasts þ untrained toys) revealed
activation within a broader network of regions, including the
inferior parietal lobule, middle temporal gyrus, and calcarine
sulcus. A complete listing of activations revealed from this ex-
ploratory analysis is presented in Table SII.

Prediction-specific simple effects

With the final set of analyses, we examined the main
effect of training in greater detail by breaking it down into
its constituent simple effects. Our analysis of prediction of
untrained compared to trained gymnastic sequences
revealed bilateral activation within the middle temporal

gyri. In addition, a cluster centered on the right precu-
neus/superior parietal lobule emerged from this contrast.
The complementary contrast for regions more responsive
when predicting untrained compared to trained wind-up
toy sequences revealed significant activation within the
left inferior temporal gyrus. These findings are illustrated
in Figure 9 and Table III.

DISCUSSION

In the present study, we investigated the flexibility of
sensorimotor brain regions when observing and predicting
action sequences observers have never before physically
performed and the extent to which visually based practice
modulates neural responses. Overall, our findings demon-
strate greater activation within the AON when predicting
compared to perceiving complex action sequences and
recruitment of additional neural resources within body
and object processing visual regions when predicting unfa-
miliar compared to familiar human and object sequences,
respectively. The consequences and implications of each of
these findings are considered in turn.

Perceiving Versus Predicting Complex Actions

When participants viewed gymnasts or wind-up toys
moving across the screen compared to imagining their

TABLE II. Interaction effects from training week by factor analyses during occluded action prediction,

from pre- and posttraining scan sessions

Region BA

MNI Coordinates Putative
functional

name t-Value
Cluster
size

Pcorrected

valuex y z

W1 To-be-trained þ W2 Untrained > W1 To-be-untrained þ W2 Trained
R inferior temporal gyrus 37 42 �55 �11 LOC 4.82 61 0.195
L superior frontal gyrus 6 �21 5 67 SMA 4.74 10 0.776
R middle temporal gyrus 37 57 �67 4 v5 4.51 71 0.149
R superior temporal gyrus 22/39 57 �52 7 STS 3.99 0.149

L inferior temporal gyrus 37 �45 �61 �8 LOC 4.49 56 0.223
L inferior temporal gyrus 37 �54 �7 �2 LOC 3.69 0.223

W1 To-be-untrained þ W2 Trained > W1 To-be-trained þ W2 Untrained
No suprathreshold regions emerged from this analysis
W1 Gymnasts þ W2 Toys > W1 Toys þ W2 Gymnasts

R angular gyrus/inferior parietal cortex 39 39 �58 19 4.54 91 0.069
R middle temporal gyrus 39 51 �52 19 MTG 4.22 0.069
R middle occipital gyrus 39/19 39 �64 31 MOG 4.20 0.069

W1 Toys þ W2 Gymnasts > W1 Gymnasts þ W2 Toys
No suprathreshold regions emerged from this analysis

MNI coordinates of peaks of relative activation within regions demonstrating an interaction between training week and one of the main ex-
perimental factors of interest. Section (a) lists regions responding to the interaction of training week (pretraining ¼ W1; posttraining ¼ W2)
and training experience (trained; untrained) with stronger activations emerging when predicting actions that were going to be trained in
week 1 and actions that were untrained in week 2, compared to predicting actions that were going to be untrained in week 1 and those
that were trained in week 2. The inverse contrast (b) revealed no suprathreshold regions. Section (c) lists regions that showed a stronger
response to predicting gymnasts in week 1 and to toys in week 2 than predicting toys in week 1 and gymnasts in week 2. Results were cal-
culated at Puncorrected < 0.001, k ¼ 10 voxels. Up to three local maxima are listed when a cluster has multiple peaks more than 8mm apart.
As no entries were significant at the FDR cluster-corrected level of P < 0.05, all regions that were significant from these interaction analyses
are illustrated in the figures in the main text. Abbreviations for brain regions: LOC, lateral occipital complex; SMA, supplemental motor
area; STS, superior temporal sulcus; IPC, inferior parietal cortex; MTG, middle temporal gyrus; MOG, middle occipital gyrus.
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movements behind an occluder, relatively greater activity
emerged within visuomotor regions of the brain, including
the frontal eye fields and a part of the calcarine cortex cor-
responding to V2. This pattern of findings broadly reflects
regions involved in visuospatial attention [Corbetta et al.,
2008], with activation of the frontal eye fields in particular
likely reflecting the current task demands to spatially track
the agents’ movements [Kelley et al., 2008; Srimal and
Curtis, 2008].

When an agent disappeared and participants imagined
how the action continued behind the occluding surface,
more activation was seen within a brain network compris-
ing bilateral inferior parietal lobule, superior temporal
gyrus, inferior frontal gyrus extending up to the supple-
mentary motor area, and the cerebellum. Our finding that
predicting complex actions engages parietal, frontal, and
temporal nodes of the AON is largely consistent with
results from earlier studies that examined prediction of
less complex action sequences [e.g., Kilner et al., 2004;
Schubotz, 2007; Stadler et al., 2011]. Thus, it appears this
network contributes to prediction processes for events
ranging from actions that are familiar and readily mapped
onto the body [Stadler et al., 2011] to complex sequences
performed by human and nonhuman agents, as in the
present study, as well as for highly abstract temporal or
spatial sequences of events [Schubotz, 2007; Schubotz and
von Cramon, 2002, 2004].

The other brain region found to contribute to general
prediction processes in the present task is the cerebellum.
A likely interpretation of cerebellar activity in the present
task is that it organizes the temporal component of percep-
tual prediction [Diedrichsen et al., 2005; Dreher and Graf-
man, 2002; O’Reilly et al., 2008]. In a recent study, O’Reilly
and colleagues investigated the brain systems involved in

a spatial compared to a temporal-spatial prediction task.
They report bilateral cerebellar activation as well as activa-
tion within frontal and parietal regions, when the task
requires both temporal and spatial prediction [O’Reilly
et al., 2008]. They interpret these findings as consistent
with the notion that the cerebellum works with sensorimo-
tor cortices to aid in efficient prediction by supplying these
regions with temporal information about dynamic events.
The present findings implicating AON and cerebellar acti-
vation during a task that likely engaged both temporal
and spatial predictive processes provide additional sup-
port for this idea.

Predicting Complex Movements Before and

After Visual Training

One of the benefits conferred by a training study with
pre- and posttraining neuroimaging measures is the ability
to examine how patterns of neural activity change based
on participants’ experience with the stimuli. One of these
interactions contrasted training week and training experi-
ence and revealed that bilateral temporal regions as well
as left SMA responded more while predicting untrained
compared to trained sequences during the posttraining
compared to the pretraining scan session. This pattern of
findings within the temporal cortex is consistent with the
notion that greater activity within the visual node of the
AON is required to support accurate prediction of visually
less-familiar action sequences [c.f. Cross et al., in press].
This idea is discussed in more detail below under the
Effects of Training section. In contrast, the relatively greater
SMA activation observed when predicting untrained
sequences in the posttraining session compared to the

Figure 8.

Imaging results from the main effects of the factorial design during prediction, evaluated during

the posttraining scan session. t-Maps are thresholded at t > 6.0, P < 0.05, FDR-corrected. Pa-

rameter estimates were extracted from each cluster from both the pretraining and posttraining

scan sessions and are plotted beneath the t-maps for illustration purposes only. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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TABLE III. Main and simple effects of factorial design during occluded action prediction,

from posttraining scan session

Region BA

MNI coordinates Putative
functional

name t-Value
Cluster
size

Pcorrected

valuex y z

Gymnasts > Toys
R middle temporal gyrus 19 48 �64 4 EBA 12.2 856 <0.001

R sup. temporal gyrus 22 66 �37 22 STS 6.6 <0.001

R middle temporal gyrus 19 45 �73 22 MTG 6.0 <0.001

L occipitotemporal cortex 37/39 �45 �70 10 EBA 8.4 545 <0.001

L inf. occipital gyrus 19 �51 �79 7 IOG 7.9 <0.001

L temporoparietal junct 40 �54 �40 25 TPJ 4.9 <0.001

L mid. occipital gyrus 18 �21 �94 �11 MOG 6.3 165 0.009

R medial parietal cortex 19 21 �58 �8 5.2 18 0.064
R lingual gyrus 18 21 �85 �8 5.2 80
R fusiform gyrus 37 45 �43 �20 4.7 16 0.380
R inferior frontal gyrus (pars triangularis) 44 39 20 28 IFG/PMv 4.3 19 0.343
R inferior frontal gyrus 6/44 33 11 23 IFG 3.6 0.343

R precentral gyrus 6 39 2 34 premotor 4.2 20 0.380
L intraparietal sulcus 7 �9 �55 61 IPS 4.1 43 0.301
Toys > Gymnasts
L middle frontal gyrus 10 �15 44 13 MFG 4.9 27 0.482
L superior occipital gyrus 17 �9 �103 10 4.9 59 0.199
L cuneus 18 �6 �91 25 4.1 0.199

R anterior hippocampus 36 27 �10 �14 4.8 14 0.684
L rolandic operculum 22 �51 �4 10 STS 4.7 22 0.553
L sup. temporal gyrus 42 �54 �13 10 STG 4.5 0.553

R inferior frontal gyrus 44 57 5 13 premotor 4.6 26 0.495
R anterior cingulate cortex 24 9 44 13 4.4 10 0.758
L insula 13 �42 8 1 4.3 20 0.584
L middle insula 13 �39 �1 10 3.8 0.584

R supramarginal gyrus 2 60 �13 28 S1 4.2 11 0.739
Trained > Untrained

No superthreshold regions emerged from this analysis
Untrained > Trained

L inferior temporal gyrus 37 �45 �64 �8 LOC 6.8 396 <0.001

L middle temporal gyrus 39 �42 �67 13 MTþ 5.1 <0.001

L fusiform gyrus 37 �45 �58 �20 5.0 <0.001

R sup. temporal gyrus 39/22 54 �52 7 STS 6.7 707 <0.001

R fusiform gyrus 37 42 �55 �11 6.2 <0.001

R middle temporal gyrus 37 57 �67 �2 ITG 5.9 <0.001

L middle frontal gyrus 6 �39 8 55 5.2 39 0.350
L precentral gyrus 4 �42 �1 55 4.1 0.350

L superior frontal gyrus 6 �21 5 67 SMA 4.6 21 0.580
L middle occipital gyrus 19 �36 �88 22 4.4 27 0.491
L middle occipital gyrus 19 �27 �76 28 4.0 0.491

R precentral gyrus 44 57 11 34 PMv 4.3 51 0.249
L precentral gyrus 44 �45 5 19 PMv 4.1 49 0.264
L precentral gyrus 6 �54 2 25 3.9 0.264

L inferior parietal lobule 40 �36 �34 37 IPL 4.0 78 0.119
L inferior parietal lobule 2 �45 �40 46 S1 4.0 0.119
L postcentral gyrus 2 �33 �37 46 S1 3.9 0.119

Untrained > Trained Gymnasts

R middle temporal gyrus 39 60 �64 �2 EBA 7.1 759 <0.001

R inferior parietal lobule 40 60 �58 19 IPL 6.7 <0.001

R middle temporal gyrus 39 45 �55 13 MTG 6.4 <0.001

R precuneus 5/7 9 �49 49 SPL 5.3 102 0.03

R postcentral gyrus 2 27 �49 55 SPL 5.2 0.03

R intraparietal suclus 2 33 �40 52 IPL 4.0 0.03
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pretraining session is consistent with the idea that this
region is involved in dynamically transforming action-
related internal references during action prediction [Sta-
dler et al., 2011]. The SMA, which is part of the premotor
node of the AON, works closely with more lateral ele-
ments of the premotor cortex and is believed to be critical
in initiating an action simulation [Grush, 2004; Voss et al.,
2006]. The fact that this region is more active when simu-
lating untrained actions likely reflects greater demands to
internally continue the occluded action’s time course, for
which there is less information than the trained actions.
Similar to the result reported by Stadler and colleagues

[2011], this area seems to be especially important when
perceptual action cues are no longer available.

The other training week contrast evaluated the interac-
tion between training week and agent form (gymnast vs.
toy). The activity pattern within the right angular gyrus
demonstrated a decreased sensitivity to agent form in the
posttraining scan session compared to the pretraining ses-
sion. The angular gyrus portion of the parietal lobe is asso-
ciated with the visual processing of others’ bodies
[Felician et al., 2009], which likely draws upon an observ-
er’s own experience of his or her body [Blanke et al., 2002;
Spitoni et al., 2010]. A possible interpretation of the

TABLE III. (Continued)

Region BA

MNI coordinates Putative
functional

name t-Value
Cluster
size

Pcorrected

valuex y z

L middle temporal gyrus 19/39 �51 �70 13 EBA 4.9 65 0.06
L middle occipital gyrus 19 �48 �70 �2 LOC 3.9 0.06

L inferior parietal lobule 7/40 �36 �46 64 IPL 4.9 23 0.302
L middle frontal gyrus 6 �33 11 49 PMd 4.9 18 0.374
L inferior frontal gyrus 47 �48 20 �11 vlPFC 4.7 33 0.273
L inferior frontal gyrus 47 �42 26 �8 IFG 4.2 0.273
L inferior frontal gyrus 45 �54 20 1 IFG 3.7 0.273

R superior temporal suclus 22 39 �22 �5 pSTS 4.7 22 0.302
L inferior frontal gyrus 6 �54 �1 37 PMv 4.7 44 0.204
R inferior parietal lobule 40/42 54 �34 25 IPL 4.5 25 0.302
R inferior frontal gyrus 6/44 54 11 37 PMv 4.5 58 0.122
R inferior frontal gyrus 44 57 23 7 IFG 4.2 0.122
R inferior frontal gyrus 45 51 20 16 IFG 3.7 0.122

R anterior insular cortex 13 39 �4 �14 4.4 24 0.302
R sup. temporal gyrus 22 66 �31 7 pSTS 4.3 11 0.541
L fusiform gyrus 37 �42 �40 �17 4.3 39 0.226
L fusiform gyrus 37 �42 �55 �20 4.2 0.226

L precentral sulcus 6 �21 2 64 SMA 4.3 25 0.302
L intraparietal sulcus 5/7 �33 �37 49 IPS 4.3 31 0.273
R middle occipital gyrus 39/19 36 �67 31 4.1 14 0.476
R superior occipital gyrus 19 36 �76 31 3.8

L precentral gyrus 6 �42 �4 52 PMd 4.1 11 0.541
Untrained > Trained Toys

L inferior temporal gyrus 37 �42 �61 �8 LOC 5.5 135 0.015

R inferior occipital gyrus 37 42 �46 �23 LOC 4.7 44 0.264
R fusiform gyrus 37 33 �40 �23 4.3 0.264
R inferior temporal gyrus 37 48 �58 �14 LOC 4.0 0.264

L inferior frontal gyrus 6 �48 5 19 PMv 4.0 17 0.665

MNI coordinates of peaks of relative activation within regions responding to the main effects of agent, collapsed across training experi-
ence [predicting gymnasts compared to toys (a) and toys compared to gymnasts (b)], the main effects of training, collapsed across agent
[predicting trained compared to untrained gymnasts and toys (c), predicting untrained compared to trained gymnasts and toys (d)],
and the simple effects of predicting untrained relative to trained gymnasts (e) and toys (f). Results were calculated at Puncorrected <

0.001, k ¼ 10 voxels. Up to three local maxima are listed when a cluster has multiple peaks more than 8 mm apart. Entries in bold
denote activations significant at the FDR cluster-corrected level of P < 0.05. Only regions that reached cluster-corrected significance are
illustrated in the figures. Abbreviations for brain regions: EBA, extrastriate body area; STS, superior temporal sulcus; MTG, middle tem-
poral gyrus; IOG, inferior occipital gyrus; TPJ, temporoparietal junction; IPS, intraparietal sulcus; IFG, inferior frontal gyrus; PMv, ven-
tral premotor cortex; MFG, middle frontal gyrus; STG, superior temporal gyrus; M1, primary motor cortex; LOC, lateral occipital cortex;
MTþ, visual area MT; ITG, inferior temporal gyrus; SMA, supplemental motor area; IPL, inferior parietal lobule; PMd, dorsal premotor
cortex; vlPFC, ventrolateral prefrontal cortex; pSTS, posterior superior temporal sulcus; S1, primary somatosensory cortex.
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present findings is that after training, participants could
make more use of their own body as a template for pre-
dicting both human and nonhuman agents’ actions. How-
ever, such an interpretation is speculative at this stage and
will require careful further testing in order to be
confirmed.

Predicting Human Versus Nonhuman Agents

One feature of action prediction we were interested in
probing was the impact of the agents’ form and motion on
predictive processes. We intentionally chose actions per-
formed by gymnasts and wind-up toys in order to side-
step confounds of between-subjects differences in physical
or visual familiarity with the action sequences before the
experiment. When directly comparing prediction of gym-

nastic to wind-up toy sequences, stronger activation
emerged within higher-level visual regions, including
bilateral middle temporal gyri, centered on coordinates
less than 10 mm from the region identified as the EBA
[Cross et al., 2010; Downing et al., 2001, 2006; Peelen and
Downing, 2007]. Past neuroimaging and neurostimulation
work on this specific region of the occipitotemporal cortex
demonstrates stronger responses when participants view
contorted postures [Cross et al., 2010] or biomechanically
impossible postures [Avikainen et al., 2003] and actions
[Costantini et al., 2005]. The present findings complement
this literature by demonstrating reliable occipitotemporal
activation when watching dynamic actions that are biome-
chanically possible, but beyond the current physical
capacity of the observer.

Figure 9.

Simple effects imaging results for predicting untrained compared

to trained gymnastic sequences (top two brains and three plots)

and untrained compared to trained wind-up toy sequences

(lower brain and plot), evaluated during the posttraining scan

session. t-Maps are thresholded at t > 4.9, P < 0.06, FDR-cor-

rected (the left occipitotemporal activation reached marginal

cluster-corrected significance at P ¼ 0.06; all other regions are

FDR-corrected P < 0.05). Parameter estimates were extracted

from each cluster from both the pretraining and posttraining

scan sessions and are plotted to the left of the t-maps for illus-

tration purposes only.

r Cross et al. r

r 482 r



Impact of Visual Experience on

Post-Training Performance

The other feature of complex prediction we aimed to
investigate was the role that purely visual experience
plays when predicting sequences that are impossible for
the observer to perform. Before discussing the imaging
results, it is worth considering that our behavioral findings
demonstrated no training-specific effects during the post-
training fMRI session (right-most bars of Fig. 4B).
Although we expected that the participants should per-
form the prediction task more accurately for the trained
compared to untrained action sequences during the post-
training scan session, we instead found that the training
phase generalized to large degree to the untrained stimuli.
Although these findings appear somewhat surprising at
first, evidence from the perceptual learning literature sup-
ports the notion that such generalization from trained to
untrained stimuli when performing a perceptual decision
task is not uncommon [Fahle and Poggio, 2001] and can
be even more pronounced when feedback is given during
training [Herzog and Fahle, 1997]. Thus, we believe the
lack of a main effect of training is due in part to the use of
feedback in our training procedure. As mentioned previ-
ously, though the absence of an effect of visual experience
in behavioral prediction performance potentially makes
the neuroimaging findings all the more illuminating, they
demonstrate that markedly different patterns of activity
are engaged to support equivalent performance for pre-
dicting untrained stimuli.

Turning our focus to the imaging findings, a striking
feature in the analysis of this main effect is that no brain
regions were found to be more active when predicting the
familiar, visually trained sequences. Although this finding
is consistent with emerging evidence exploring changes in
‘‘neural efficiency’’ among karate experts [Babiloni et al.,
2010] and guitarists [Vogt et al., 2007], it stands in stark
contrast to studies where physical training manipulations
were used with expert dance [Calvo-Merino et al., 2005;
Cross et al., 2006] or gymnastic [Munzert et al., 2008; Zen-
tgraf et al., 2005] populations. The dance and gymnastics
studies commonly show stronger AON activation when
participants observe or imagine sequences that they have
physically practiced or for which they have some general
physical familiarity. Moreover, several studies investigat-
ing the impact of visual learning also demonstrate
increased AON activation when observing visually-trained
sequences [Burke et al., 2010; Cross et al., 2009; Frey and
Gerry, 2006]. In each of these prior studies, however, vis-
ual experience is always confounded to some degree with
physical ability (i.e., even if participants engaged in no
physical practice of observed movements, the observed
movements were still generally within their range of
motor and flexibility capabilities). Thus, it seems plausible
that the discrepancy concerning AON activation and vis-
ual experience might be related to participants having
some degree of relevant physical experience in prior stud-

ies and no relevant physical experience in the current
investigation.

The inverse contrast, which compared prediction of
untrained sequences to those participants visually trained
to predict, revealed activation of bilateral clusters centered
on the occipitotemporal node of the AON (left inferior
temporal gyrus and right superior temporal gyrus). This
finding is consistent with the notion that unfamiliar
actions that do no belong in an observer’s motor repertoire
are processed mainly with respect to their visual proper-
ties. Moreover, this result is congruent with the findings
reported by Buccino and colleagues [2004], where they
used fMRI to investigate observation of different mouth
actions performed by conspecifics (humans), monkeys,
and dogs. They found that actions for which participants’
have no prior motor experience with, such as a dog bark-
ing, elicit activation solely within visual regions of the
AON and concluded that a lack of motor experience leads
to understanding on a visual basis only. Returning to the
present findings, even though participants have no motor
experience with any of the actions they are predicting
(whether trained or untrained), it seems that the untrained
actions require even more visual processing to accurately
predict.

Examination of the simple effects of training brings to
light the engagement of agent-specific processing during
prediction. When participants were predicting visually
untrained compared to trained gymnastic sequences, the
regions recruited to support these predictions include
bilateral middle temporal gyri, with activations centered
on a region likely to be EBA [Downing et al., 2001; Peelen
and Downing, 2007], and a cluster situated on the precu-
neus in the superior parietal lobule. In contrast, the left in-
ferior temporal gyrus, in a cluster likely to be part of the
lateral occipital complex (LOC), was recruited when pre-
dicting untrained compared to trained wind-up toy
actions.

Our finding that visual regions that selectively process
the human body are more responsive when predicting
unfamiliar compared to familiar gymnastic sequences is in
line with prior work on this area and the representation of
complex or impossible postures or actions [Avikainen
et al., 2003; Costantini et al., 2005; Cross et al., 2010]. In
contrast to the middle temporal activations, the parietal
activation from this contrast might reflect increased im-
agery demands for unfamiliar gymnastic sequences. In
particular, this region of the parietal cortex is strongly
implicated in imagery tasks2 [Grèzes and Decety, 2001;

2To be clear on the distinction between prediction and imagery, we
contend that imagery, defined as overt or covert access of sensorimo-
tor representations (Grèzes and Decety, 2001), plays a role in simula-
tion processes engaged during action prediction (as in the present
study). However, we would argue that imagery does not always
serves action prediction processes, and thus aim to distinguish
between these two terms in our interpretation of prior work on pre-
diction and imagery.
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Guillot et al., 2009], especially those that involve imagined
transformations of the human body [Jackson et al., 2006;
Zacks et al., 2002].

The activation within the left inferior temporal gyrus/
LOC that emerged while predicting unfamiliar compared
to familiar mechanical toy actions is consistent with this
visual region’s role in object processing [Grill-Spector
et al., 1998, 2001; Malach et al., 1995; Vuilleumier et al.,
2002]. Moreover, work comparing the visual analysis of
bodies and objects points to a clear distribution of process-
ing within the extrastriate cortex, with LOC responding
more to objects than bodies, and EBA showing the inverse
pattern of results [Spiridon et al., 2006]. Thus, our present
finding that object-processing visual regions support pre-
diction of unfamiliar object motion, and body-processing
visual regions supporting prediction of unfamiliar human
actions is consistent with a category-specific account of
the visual node of the AON’s contribution to action
prediction.

Theoretical Implications

Taken together, the findings from this study further
inform both the prediction model of premotor cortex
[Schubotz, 2007; Schubotz and von Cramon, 2002, 2004] as
well as the predictive coding model of AON function
[Gazzola and Keysers, 2009; Kilner et al., 2007a,b; Neal
and Kilner, 2010]. Revisiting the prediction model of pre-
motor cortex, the main premise of this model is that the
predictive functions of the premotor cortex are generally
exploited for anticipating dynamic events [Schubotz, 2007].
Much evidence has been reported that demonstrates lateral
and medial premotor structures supporting prediction of
both nonbiological events [Schubotz and von Cramon,
2002, 2004; Wolfensteller et al., 2007] as well as more fa-
miliar actions performed by humans [Stadler et al., 2011].
In the present study, we show that premotor structures
also support prediction of human and nonhuman agents
performing actions participants cannot physically repro-
duce, but only when the actions are visually unfamiliar/
untrained (see Fig. 6 and Table III). A challenge for future
studies will be to determine on a finer scale how visual
(and motor) familiarity interacts with responses within the
different medial and lateral subcomponents of the premo-
tor cortex during action prediction.

Turning our attention to the predictive coding account
of AON function, evidence from the main and simple
effects of training provide support for this model, which
maintains that when an unfamiliar action is observed or
imagined, the brain has less prior visual or motor informa-
tion to inform a prediction of how that action might
unfold across time and space, and consequently such pre-
dictions are less accurate and more error prone [Gazzola
and Keysers, 2009; Kilner et al., 2007a,b; Neal and Kilner,
2010]. Thus, the AON must perform more active computa-
tions to generate a prediction of how an unfamiliar action

might unfold [Cross et al., in press; Kilner et al., 2007a;
Schippers and Keysers, 2011]. The present findings are
consistent with this notion: when participants had to pre-
dict visually unfamiliar actions, visual (and, to a lesser
extent, premotor) regions of the AON responded more
robustly than when the actions were familiar. We think
that this is likely due to increased demand on these
regions to construct a prediction of an unfamiliar event, as
well as an increased error signal, which is driven by a lack
of prior visual experience.

In summary, daily life demands that we accurately
anticipate the actions of people and objects, not all of
which move in a familiar, predictable manner. To
smoothly interact with such agents, we used a declarative
temporal prediction task to show that when one does not
have physical experience with the observed actions, the
brain relies upon parietal and visual areas of the AON, as
well as the cerebellum, to form accurate predictions of
ongoing, unfamiliar actions. Moreover, the brain becomes
more efficient in predicting complex actions after visual
practice, and less visual analysis is required to support ef-
ficient prediction. Therefore, when confronted with a novel
situation in daily life that requires accurate prediction
(perhaps following traffic signals in a foreign land or
plucking your lunch from a sushi conveyer belt?), taking
some time to observe before acting could result in more
accurate execution of the intended action.
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assistance by Jöran Lepsien, the gymnasts at the Turn-
und Gymnastikclub e. V. Leipzig, and an outstanding
team of interns who assisted with various stages of this
project, including Carmen Hause, Andreas Wutz, Raphael
Schultze-Kraft, and Jana Strakova.

REFERENCES

Avikainen S, Liuhanen S, Schurmann M, Hari R (2003): Enhanced
extrastriate activation during observation of distorted finger
postures. J Cogn Neurosci 15(5):658–663.

Babiloni C, Marzano N, Infarinato F, Iacoboni M, Rizza G,
Aschieri P, Cibelli G, Soricelli A, Eusebi F, Del Percio C (2010):
‘‘Neural efficiency’’ of experts’ brain during judgment of
actions: A high-resolution EEG study in elite and amateur
karate athletes. Behav Brain Res 207:466–475.

Blanke O, Ortigue S, Landis T, Seeck M (2002): Stimulating illu-
sory own-body perceptions. Nature 419:269–270.

Buccino G, Lui F, Canessa N, Patteri I, Lagravinese G, Benuzzi F,
Porro CA, Rizzolatti G (2004): Neural circuits involved in the
recognition of actions performed by nonconspecifics: An fMRI
study. J Cogn Neurosci 16:114–126.

Burke CJ, Tobler PN, Baddeley M, Schultz W (2010): Neural
mechanisms of observational learning. Proc Natl Acad Sci
USA 107:14431–14436.

r Cross et al. r

r 484 r



Calvo-Merino B, Glaser DE, Grezes J, Passingham RE, Haggard P
(2005): Action observation and acquired motor skills: An fMRI
study with expert dancers. Cereb Cortex 15:1243–1249.

Caspers S, Zilles K, Laird AR, Eickhoff SB (2010): ALE meta-anal-
ysis of action observation and imitation in the human brain.
Neuroimage 50:1148–1167.

Chamley C (2003): Rational Herds: Economic Models of Social
Learning. New York: Cambridge University Press.

Corbetta M, Patel G, Shulman GL (2008): The reorienting system
of the human brain: From environment to theory of mind.
Neuron 58:306–324.

Costantini M, Galati G, Ferretti A, Caulo M, Tartaro A, Romani
GL, Aglioti SM (2005): Neural systems underlying observation
of humanly impossible movements: An FMRI study. Cereb
Cortex 15:1761–1767.

Cross ES, Hamilton AF, Grafton ST (2006): Building a motor simu-
lation de novo: Observation of dance by dancers. Neuroimage
31:1257–1267.

Cross ES, Kraemer DJ, Hamilton AF, Kelley WM, Grafton ST
(2009): Sensitivity of the action observation network to physical
and observational learning. Cereb Cortex 19:315–326.

Cross ES, Mackie EC, Wolford G, Hamilton AFdC (2010): Con-
torted and ordinary body postures in the human brain. Exp
Brain Res 204:397–407.

Cross ES, Liepelt R, Hamilton AF, Parkinson J, Ramsey R, Stadler
W, Prinz W:Robotic movement preferentially engages the
action observation network. Human Brain Mapping (in press).

Diedrichsen J, Verstynen T, Lehman SL, Ivry RB (2005): Cerebellar
involvement in anticipating the consequences of self-produced
actions during bimanual movements. J Neurophysiol 93:801–
812.

Downing PE, Jiang Y, Shuman M, Kanwisher N (2001): A cortical
area selective for visual processing of the human body. Science
293:2470–2473.

Downing PE, Peelen MV, Wiggett AJ, Tew BD (2006): The role of
the extrastriate body area in action perception. Soc Neurosci
1:52–62.

Dreher JC, Grafman J (2002): The roles of the cerebellum and ba-
sal ganglia in timing and error prediction. Eur J Neurosci 16:
1609–1619.

Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR,
Amunts K, Zilles K (2005): A new SPM toolbox for combining
probabilistic cytoarchitectonic maps and functional imaging
data. Neuroimage 25:1325–1335.

Eickhoff SB, Heim S, Zilles K, Amunts K (2006): Testing anatomi-
cally specified hypotheses in functional imaging using
cytoarchitectonic maps. Neuroimage 32:570–582.

Fahle M, Poggio T, editors. 2001. Perceptual Learning. Cambridge,
MA: MIT Press.

Felician O, Anton JL, Nazarian B, Roth M, Roll JP, Romaiguere P
(2009): Where is your shoulder? Neural correlates of localizing
others’ body parts. Neuropsychologia 47:1909–1916.

Frey SH, Gerry VE (2006): Modulation of neural activity during
observational learning of actions and their sequential orders.
J Neurosci 26:13194–13201.

Friston KJ, Worsley KJ, Frackowiak RSJ, Mazziotta JC, Evans AC
(1993): Assessing the significance of focal activations using
their spatial extent. Human Brain Mapp 1:210–220.

Gallese V, Goldman A (1998): Mirror neurons and the simulation
theory of mindreading. Trends Cogn Sci 2:493–501.

Gazzola V, Keysers C (2009): The observation and execution of
actions share motor and somatosensory voxels in all tested

subjects: Single-subject analyses of unsmoothed fMRI data.
Cereb Cortex 19:1239–1255.

Graf M, Reitzner B, Corves C, Casile A, Giese M, Prinz W (2007):
Predicting point-light actions in real-time. Neuroimage 36
(Suppl 2):T22–T32.
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