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Highlights
As robots become increasingly present
in human society, considerable gaps re-
main between expectations for the social
roles these robots might play and their
actual abilities.

Research examining social cognition
when interacting with robots offers a
promising avenue for understanding
how best to introduce robots to complex
social settings, such as in schools,
hospitals, and at home.

Thanks to methodological advances in
human neuroscience, such as mobile
neuroimaging, human–robot interaction
research is moving out of the laboratory
Anna Henschel ,1,3,@ Ruud Hortensius ,1,3,@ and Emily S. Cross 1,2,*,@

Artificial intelligence advances have led to robots endowed with increasingly
sophisticated social abilities. These machines speak to our innate desire to per-
ceive social cues in the environment, as well as the promise of robots enhancing
our daily lives. However, a strong mismatch still exists between our expectations
and the reality of social robots. We argue that careful delineation of the
neurocognitive mechanisms supporting human–robot interaction will enable us
to gather insights critical for optimising social encounters between humans
and robots. To achieve this, the field must incorporate human neuroscience
tools including mobile neuroimaging to explore long-term, embodied human–
robot interaction in situ. New analytical neuroimaging approaches will enable
characterisation of social cognition representations on a finer scale using
sensitive and appropriate categorical comparisons (human, animal, tool, or
object). The future of social robotics is undeniably exciting, and insights from
human neuroscience research will bring us closer to interacting and collaborat-
ing with socially sophisticated robots.
and into the real world.
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Human Neuroscience as the Icebreaker in a Social Robotics Winter
Human–robot interaction (see Glossary) is a young field currently in a phase of unrest. Since
the development of KISMET in the MIT Media Lab in the late 1990s, one of the first social robots,
significant progress has been made towards engineering robots capable of engaging humans on
a social level. Robots that respond to and trigger human emotions not only enable closer human-
machine collaboration, but can also spur human users to develop long-term social bonds with
these agents. While progress in developing increasingly innovative and socially capable robots
has advanced considerably over the past decade or so, some have suggested that the field is
approaching a social robotics winter. Referencing the period of disillusionment following
escalating hype surrounding artificial intelligence [1], the still-limited social repertoire of even
the most advanced embodied robots calls into question the proclaimed ‘rise of the social
robots’ [2,3].

With robots failing to deliver on expectations, social interaction has been named one of the ten
grand challenges the field of robotics is now facing [4]. To facilitate progress toward this endeavour,
the rich literature of cognitive neuroscience offers vital insights into human social behaviour, not only
on a surface level, but also relating to underlying functional and biological mechanisms [5–7]. Both
human–robot interaction researchers and neuroscientists working with robots converge in their
interest in facilitating smooth and successful social encounters between robots and humans.
This joint effort should ultimately enable society at large to take advantage of the often-heralded
potential of robots to provide economical care, company, and coaching.

In this opinion article, we argue that studying the human brain when we perceive and interact with
robots will provide insights for a clearer and deeper understanding of the human side of human–
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Glossary
Action observation network (AON):
a collection of brain regions comprising
parts of parietal, premotor, and
occipitotemporal cortices that responds
when watching other agents (human or
robotic) in action.
Automatic imitation: see motor
interference.
Gaze cueing paradigm: a commonly
used psychological paradigm used to
investigate the mechanisms of joint
attention. The gaze of an observed other
(human or non-human, physically
present or viewed on a screen) either
looks towards or away from a visual
target the participant is required to
attend to, and the cost in a participant’s
response time is thought to be a
measure of social engagement.
Human–robot interaction: see social
robotics.
Mentalising: a cognitive process by
which an individual reflects on, explores,
and interprets their own and others’
thoughts and feelings, and how these
influence behaviour and actions.
Motor interference: observing others
perform movements incongruent to
one’s own has been found to
produce motor interference. Motor
interference is closely related to
automatic imitation, a phenomenon
that describes the tendency of
humans to implicitly imitate others’
actions and other social cues.
Natural language processing: field of
study concerned with the recognition
and production of natural language by
computers and algorithms.
Pain matrix: collection of brain regions
associated with empathy and emotional
processing when seeing another
individual in pain or distress. Primary
nodes of this network include bilateral
anterior insular and medial anterior
cingulate cortices.
Person perception network (PPN): a
collection of brain regions responsive to
other individuals, especially their faces
and bodies. Regions include the fusiform
face area and extrastriate body area,
among others.
Prediction error: a mismatch between
a predicted and observed response.
Repetition suppression: in a brain
imaging context, this refers to a
reduction in a neural response that
emerges when a stimulus (or a certain
aspect of a stimulus) is repeated more
than once. Also referred to as repetition
priming.
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robot interaction, and will thus set the stage for a social robotics spring. Our focus on the
human side of these interactions, including consideration of the constraints of social cognition,
serves to highlight what recent advances in human neuroscience, in terms of method and theory,
can contribute to fluent human–robot encounters. The focus of the majority of past studies has
been the passive perception of other agents. While this work provides a first step towards
characterising social interactions, a focus on perception alone neglects the rich, complex, and
dynamic nature of behaviours that unfold during social exchanges in the real world. How can
social neuroscience further our understanding of not only perception but also of dynamic relation-
ships with robots? These insights should help explain how people view and treat these artificial
agents in relation to humans, pets, and other animals, tools and objects. Moreover, answers to
these questions will help us to understand and support resulting societal changes in the domain
of care, education, ethics, and law. In reflecting on the neurocognitive machinery that supports
human–robot interactions, we suggest that focusing on representations of social cognition and
how these change during actual and sustained interactions with physically present robots
will be important. Moreover, we argue that minimally invasive mobile neuroimaging techniques
offer exceptional promise for deepening our understanding of the human side of human-robot
interaction. These methods will accelerate human–robot interaction research by incorporating
social dimensions into our exchanges with these machines, thus generating crucial insights
helpful in meeting the grand challenge of creating truly social robots. After all, roboticists, neuro-
scientists, and robots will all benefit from an improved understanding of human social cognition in
an age of robots [5,7,8].

The Origins of Imaging the Human Brain During Interactions with Robots
Human fascination with creating a mechanical self dates back to antiquity, with writers in ancient
Greece and ancient China conjuring humanlike automata to serve as workers and servants [9]. In
the past century, the type of automaton that has most captured the human imagination (and
research and development investment) is robots, with some contemporary models edging closer
to the fictionalised ideals that first appeared centuries ago. Concurrent with advances in robotics
technology has been the advent and rapid development of human brain imaging technology. This
technology has been vital in developing our understanding of the neurocognitive mechanisms
that support social behaviour among humans. More recently, the fields of human–robot interac-
tion and neuroscience have begun to intersect, providing new vistas on social cognition during
interactions with social robots, with seminal studies investigating motor resonance, action obser-
vation, joint attention, and empathy felt towards robots. These studies showcase the diversity of
brain imaging modalities involved and the technical advances evident from early human–robot
interaction research, and provide a starting point for neurocognitive perspectives on these
interactions.

One initial study in this domain [10] probed the flexibility of the action observation network
(AON) and reported that the parts of the parietal, premotor, and middle temporal cortices
ascribed to this network respond both to watching humans grasp and manipulate objects, as
well as an industrial robot arm performing these same actions. These findings were corroborated
by an electroencephalography (EEG) study showing mu-suppression over sensorimotor or AON
regions for both robotic and human agents [11]. Insights into motor resonance for robotic actions
were further replicated and extended when researchers [12] reported a series of two functional
magnetic resonance imaging (fMRI) experiments that found the AON to be, in fact, more strongly
engaged during observation of (unfamiliar) robotlike motion, regardless of whether a human
or robotic agent performed the movement. These and other initially surprising findings
(reviewed in [13]) have been attributed to greater modulation of the AON following greater
prediction errors due to the unfamiliarity of robotic motion.
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Social robotics: this term
encompasses a wide variety of research
relating to robots designed to engage
humans on a social level, often framed in
a companionship or assistance context.
Human–robot interaction: is one facet of
this diverse field, which specifically
investigates how humans perceive and
interact with robots.
Social robotics winter: a term used to
describe the current disillusionment
surrounding social robots, as
technological developments have failed
to live up to the hopes and expectations
fed by robotic depictions in film,
television, and other media, as well as
the failure of several recent robotics
start-ups.
Theory of mind: the ability to attribute
other mental states (thoughts, desires,
and intentions) to other individuals.
Commonly associated with a network of
brain regions.
Theory of mind network: includes the
medial prefrontal cortex, bilateral
temporoparietal junction, and the
precuneus.
Uncanny valley hypothesis: humans
prefer anthropomorphic agents, but
reject them if they appear too humanlike.
To what extent the uncanny valley is an
artefact of contemporary experimental
procedures remains unknown.
Wizard-of-Oz: describes an
experimental set-up in which the robot
does not operate autonomously, but
rather is controlled by the experimenter,
thus resembling the trickster turned
wizard in the eponymous film.
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While observing robotic movements engages action-related brain areas, questions remain
regarding the extent to which human observers also ascribe emotions and intentions to lifeless
machines. Past brain imaging studies reveal that humans do indeed show engagement of
the person perception network (PPN) when observing emotional expressions as expressed
by robots [14] and interactions between robots and other humans [15]. The circumstances
under which similar brain responses linked to empathy might emerge when observing humans
and robots in simulated pain [16,17], or when attempting to decipher the intentions of robots
[5], remain an active field of inquiry. An fMRI experiment using the gaze cueing paradigm
showed behavioural and brain responses linked to mentalising, such as enhanced activation
of bilateral anterior temporoparietal junction, only when people believed that another person
controlled the robot [18].

State-of-the-art Human Neuroscience Approaches to Human–Robot Interaction
Major strides have beenmade in applying advances in human neuroimaging technology to study-
ing human–robot interactions in contexts that approximate more naturalistic social interactions.
These studies further illuminate not only the flexibility and limits of human social cognition when
perceiving and interacting with robots, but also some of the challenges and opportunities that
roboticists face (and will continue to face) as they develop increasingly social robots. Work in
this domain highlights the importance of not only stimulus cues to socialness (i.e., does the
agent look and move like a human or a machine?), but also, and arguably even more importantly,
how perceivers’ prior beliefs or expectations shape brain responses and behaviour [19–21].

Neuroscientists are now also taking advantage of increasingly sophisticated and multivariate
analytical approaches to more sensitively probe how the human brain represents robots
compared to people (Box 1). Recent work has applied representational similarity analyses to
fMRI data collected when participants viewed three agents (a human, an android, and a
mechanical-looking robot) performing different actions [22]. Results revealed that different
nodes of the AON represent distinct aspects of these actions, and these representations appear
to be hierarchically arranged. Specifically, occipitotemporal regions coded for low level action fea-
tures (such as form and motion integration), while parietal regions coded more abstract and se-
mantic content, such as the action category and intention. These findings corroborate related
work that examined effective connectivity between these two nodes when participants viewed
actions of varying familiarity [23].

Additional work highlights important aspects of how the human brain computes and evaluates
anthropomorphism [24–26]. One study has attempted to evaluate the uncanny valley
hypothesis using an elegant combination of modelling behavioural ratings and functional
connectivity data [25]. The authors reported a response profile within the ventromedial
prefrontal cortex that closely reflected the hypothesised, nonlinear, uncanny valley shape
when viewing images of robots and humans rated more or less unsettling. Further modelling
demonstrated that a distinct signal originating in the amygdala predicted when participants
would reject artificial agents. This finding ties in with another recent study [26] that examined
anthropomorphising behaviour among a small group of individuals with rare basolateral amygdala
lesions. These individuals were able to anthropomorphise animate and living entities similarly to
neurologically intact individuals, but anthropomorphised inanimate stimuli (such as a robot) less
than controls. The authors suggest that the limbic system plays a key role in processing signals
originating from artificial agents in a social versus non-social manner.

However, mere observation of robots in one-off laboratory studies can tell us only so much about
human–robot interactions. Two recent fMRI studies highlight further innovations in bringing
Trends in Neurosciences, June 2020, Vol. 43, No. 6 375



Box 1. Delineating the Neural Mechanisms of Human–Robot Interaction

How can we examine the functional and temporal changes in neural representations of social cognition during
human–robot interaction? Neuroimaging techniques such as EEG and fMRI provide detailed temporal and spatial
information on these changes. Traditionally, researchers have looked at relative differences in measures of neural
activity during the perception of human and robotic agents. Most research used univariate analyses thereby focus-
sing on distinct networks in the brain, such as the AON, PPN, and theory-of-mind network. This approach allows
researchers to answer questions such as whether brain activation when observing a ‘happy’ robot is higher or lower
compared with observing a happy human. In recent years, however, the development and employment of increas-
ingly more detailed analyses, ranging from repetition suppression, to representational similarity analysis, to multivoxel
pattern analysis, provide further and new ways to address questions regarding the overlap of neural architectures for
social engagement with humans compared with robots. Repetition suppression enables mapping of potential
overlap between similar or dissimilar categories, as repeated stimuli lead to deactivation of regions responsive to
these stimuli. For example, does a ‘happy’ robot followed by a happy human (or vice versa) lead to reduced neural
activity in a particular region of interest? The presence of repetition suppression would argue for shared neural
resources underlying the processing of perceived robotic and human happiness. The critical next step is to capture
the changes in the representation of social cognition during perception and interaction with social robots is the use of
multivariate analyses. Representational similarity analyses can establish the similarity in neural activation during the
observation of a happy or angry human and a happy- or angry-appearing robot (Figure IA). This approach can test
if the neural activation represents a particular stimulus dimension. For example, does activity reflect a representation
at the level of agent (activity for robots is dissimilar to humans, regardless of expression) or emotion (activity is
dissimilar between happy and angry expressions, but similar across humans or robots). Lastly, a promising way to
probe the extent to which perceiving and interacting with humans and robots truly share representations at the
neural level is to use multivoxel pattern analyses (Figure IB). Instead of measuring magnitude changes, this technique
assesses patterns of neural activity that are predictive of specific task conditions, that is, the representation of
different emotions. One way to test possible shared representations is to train a classifier to distinguish the observation of
a robot displaying happiness from a robot displaying anger, and to test this classifier to distinguish a human experiencing
happiness from experiencing anger. If the human brain represents perceived human and robot emotions similarly, then
the decision criteria of the classifier can be used to distinguish these two different categories. Together, these analytical
tools provide new vistas on human social cognition during real and long-term interactions with social robots and the
representation thereof.
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Figure I. Towards a Shared Representation of Social Cognition During Human–Robot Interaction.
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together neuroscience, robots, and real-world interactions to advance the fields of social cognition
and social robotics collectively. The first study paves the way for future social neuroscience
research to incorporate unrestricted social interactions with autonomous agents while
simultaneously measuring brain responses [27]. The authors describe a framework that allows
participants to interact with a conversational agent (a Furhat robot) or a human partner while a
multimodal dataset is collected including behaviour (e.g., speech, eye gaze) and physiology
(e.g., respiration, neural activity). Initial results show less engagement of specific brain regions
playing a role in everyday social cognition, such as the temporoparietal junction andmedial prefron-
tal cortex, during live human–robot interaction compared with human–human interaction [27].
Another study examined the extent to which a prolonged period of time spent socialising with
Cozmo, a palm-sized, playful robot, shapes empathic responses to seeing that same robot ‘in
pain’ [28]. These authors employed pre- and post-socialisation intervention fMRI sessions and
measured repetition suppression within the pain matrix to determine whether a week of daily
interactions with Cozmo would shift participants’ empathy toward the robot to look more like empa-
thy for another person, based on neural activity aswell as behavioural responses.While this study did
not find compelling evidence that a week of socialising with this particular robot discernibly shifted
empathic responses to look more humanlike [28], this work nonetheless sets the stage for studying
the impact of longer-term interactions with robots on social neurocognitive processes. This area of
work is crucial if robots will indeed be taking on sustained social roles in close proximity to humans
in our daily lives, and should inform robotics developers on ways to maximise social engagement
not just for an hour or during an initial encounter, but over the long term.

Together, the findings currently emerging from neuroscientific investigations into human–robot
interactions highlight how robots are useful tools for probing core features (actions, emotions,
intentions) as well as the flexibility of social cognitive processing in the human brain. While
significant progress has been made, efforts to capture and characterise brain responses during
live, ongoing interactions with robots remain in the very early stages. As mentioned later, this is
likely to be one of themost fruitful areas for further exploration and development. However, before
moving forward with real social interactions, clarification is required regarding the engagement of
social cognitive brain regions.

How Should We Probe the Neurocognitive Reality of Human–Robot Interaction?
Neural responses, as measured using fMRI and EEG, when perceiving or interacting with robots
differ vastly across different brain networks. Generally, activity within the PPN is not reduced
when people observe social robots and other artificial agents compared with people, while
activity within the theory-of-mind network is reduced [5,14]. Going beyond differences in
neural activation magnitude, future research in this area will be propelled by mapping the neural
representation of social cognition when we engage with robots and characterising how these
representations change over time (Box 1).

Many studies examining how humans perceive and interact with robots have focused on the the-
ory-of-mind network and the PPN. These two networks underlie everyday social cognition and
are a suitable starting point to investigate the engagement of social cognitive brain regions
when encountering robots. Yet, emerging evidence suggests that other brain regions, including
the inferior parietal lobule, play a key role when we engage with social robots (Figure 1). Increased
activity in object-selective brain regions has consistently been reported across studies using
different robotic agents [12,27,28]. It is therefore critical to capture changes beyond the standard
person perception and theory-of-mind networks to provide an unbiased account of human–robot
interaction, while simultaneously acknowledging the possibility that robots are perceived as ob-
jects after all, at least in some respect or in certain circumstances.
Trends in Neurosciences, June 2020, Vol. 43, No. 6 377



IPL

MOG

FG

 vs (                       &                       )

IP
L

F
G

M
O

G

1 2 3 4

Objects > 

(faces and bodies)

Robots > humans

(A) (B)

TrendsTrends inin NeurosciencesNeurosciences

Figure 1. Activity in Object-Specific Brain Regions During Human–Robot interactions. Across several studies that employed different robotic platforms and
experimental procedures, a consistent finding is that engaging with robots, compared with engaging with humans, robustly activates object-specific brain regions.
(1) Observing robots compared with humans ostensibly experiencing pain or pleasure elicited more activity in the fusiform gyrus (FG), middle occipital gyrus (MOG),
and the inferior parietal lobule (IPL) [28]. While (2) live interactions with a robot elicited some of these regions [27], observations of (3) emotions and intentions
expressed by a robot (Hortensius and Cross, unpublished data), and (4) robotic movements [12] lead to widespread activity across these regions. These results
indicate the importance of considering brain regions that are selective for object perception. Maps for each study are overlaid on top of an independent object localiser
[67]. Unthresholded group-maps are shown for the four studies, while the objects versus faces and bodies statistical map (n = 28) for the object localiser is visualised
at the family-wise error (FWE) corrected threshold of P b0.05 (k = 10). Data for (1) and (2) are from https://identifiers.org/neurovault.image:108836 and
https://identifiers.org/neurovault.image:112530 respectively [68]. Abbreviations: FG, fusiform gyrus; MOG, middle occipital gyrus; IPL, inferior parietal lobule.
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Researchers have almost exclusively tested whether robots elicit humanlike responses (i.e., do
we perceive and react to emotions expressed by a robot similarly to those expressed by a
human?). Focusing on direct comparisons between robots and humans does not acknowledge
the possibility that robots could elicit sub- or supra-threshold brain responses in relation to a
particular object category. Increased activity in response to human stimuli could therefore be
the result of a narrow (univariate) comparison between the two agent categories. A central
question in human–robot interaction studies should be what the appropriate comparison
categories are for different types of robots. Of course, these could range from humans to objects
to animals, and the best answer will naturally depend on the specific research question being
tested [29]. To establish the place robots might occupy in our social milieu, we need to measure
the (dis)similarity to animate agents (e.g., a human or pet) as well as objects (e.g., a phone).
Answers to these questions will not only advance our understanding of how people perceive
robots and the development of psychological benchmarks for the success of social robots, but
also touch upon philosophy, cognitive science and law, which have important implications for
society at large (e.g., morality and ethics) [30–32].

Towards Understanding Real Interactions with Social Robots
Screen-based experiments, third-person observation, and one-off or short-term interactions with
robots already provide crucial insights on the social cognitive processes that underlie engage-
ment with these novel agents. For the field to move forward, future studies should investigate
real and long-term interactions with embodied robots in ecologically valid settings. These studies
will provide much needed evidence as to how the human brain negotiates interactions with these
agents in the real world. Interactions in social spaces that go beyond the laboratory and are
378 Trends in Neurosciences, June 2020, Vol. 43, No. 6
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relevant to the robotic platform and the user (e.g., schools, care facilities, and hospitals) will be
particularly important [9]. The field of social robotics has a long tradition of usability and user
experience studies and these investigations will benefit from the sharpened focus on rigor and
reproducibility that contemporary psychology and neuroscience bring to the table (Box 2).

The field of social neuroscience in general still needs to answer the call for taking into account the
importance of the second person in an interaction [33]; this challenge is especially relevant for the
study of our interactions with social robots. Paradigms employing free-flow interactions, wherein
a recursive perception-action loop exists between two or more agents, are needed. Fortunately,
several studies have begun to look at the impact of exposure to (or interactions with) robots,
which cover a wider variety of robot design andmorphology [8,18]. This work is starting to explore
neurocognitive aspects of human–robot interactions by integrating information derived from be-
haviour (e.g., speech and eye gaze) and physiology (e.g., respiration and neural activity) [27,28].
One of the next steps towards measuring truly unrestricted social interactions is through the
use of mobile functional near-infrared spectroscopy (as highlighted later). Combining these
state-of-the-art neurosciencemethods with new developments in natural language processing
should enable researchers to step away fromWizard-of-Oz methods and provide new ways to
examine the social nature of human–robot interactions.

Human–robot interactions are shaped by prior experiences, expectations, and beliefs that are
continuously updated [5]. It is therefore critical to go beyond contrasting pre- versus post-
interaction measures, and incorporate longitudinal experimental designs to address questions
on experience-dependent plasticity of human social cognition when interactingwith social robots.
Of note, several commercially available robots allow researchers to collect large datasets per
experimental subject over long periods of time, somewhat akin to the experience sampling
method (an intensive longitudinal collection of self-report measures). For example, the Cozmo
robot [28,34] collects a rich set of data spanning facial recognition, game performance, and
Box 2. Integrating Open Science Practices into Human–Robot Interaction Studies

The movement towards open science practices and an increased focus on the reproducibility of research findings is
gaining momentum across research domains in the life and physical sciences, including psychology and human neurosci-
ence [56,57]. Similarly, these issues are acknowledged in artificial intelligence (AI) research [58], and have recently been
further reflected upon by robotics researchers [59–61]. Issues of transparency and reproducibility are especially important
for investigations of the neurocognitive mechanisms supporting human–robot interaction. Integrating methods and tools
from psychology and neuroscience, researchers not only face reproducibility issues key to these fields (e.g., reliability of
fMRI findings [62], and researchers’ degrees of freedom in preprocessing pipelines of fNIRS and fMRI data [63,64]), but
also issues specific to the field of social robotics (e.g., cross-platform generalisability and access to expensive and
bespoke robotic platforms). Encouragingly, experimental reform is being implemented in the human–robot interaction
community, with the 2020 ACM/ IEEE International Conference on Human–Robot Interaction being the first to invite
replication studies for submission. In recent years, psychologists and neuroscientists are more broadly embracing open
science practices, which will help to remedy many of the above-mentioned issues. Concrete actions along these lines in-
clude taking steps like preregistering studies, conducting replication studies, sharing researchmaterials, and (anonymized)
data, as well as posting preprint articles [56,57]. This scientific reform can especially benefit human–robot interaction
research, as studies are often resource- and time-intensive and include relatively small samples of subjects. Sharing data
and scripts will enable the wider community to conduct secondary and meta-analyses and exploratory tests on published
data. Sharing of research resources and products should also contribute to a more inclusive community, giving, for
example, access to data from bespoke robotic platforms. Finally, a movement toward greater openness and transparency
should facilitate more exchange between disciplines as well as a more robust human–robot interaction literature, by cre-
ating an ecosystem conducive of cross-platform replication. One question the field needs to address is the cross-platform
generalisability of previous findings [14,65]. Developmental social robotics already successfully implements artificial
architectures to test cross-platform generalisability [66], and future research should further incorporate this practice to
replicate and extend previous findings. Moving forward, the implementation of open science practices can help facilitate
more reproducible (and thus reliable) user studies, and can foster a common ground in terms of methodology between
human–robot interaction researchers and cognitive neuroscientists.
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‘emotional responses’ performed by the robot. Of course, these procedures must consider
privacy, data protection, and other ethical issues [35], but nonetheless offer promise if employed
responsibly.

A consideration to keep in mind in the context of social cognition when interacting with robots is
the target population that the robots are designed for, and the purpose of these interactions.
Whereas two key target populations for social robotics are children and older adults, participant
samples in neuroscience and psychology predominately comprise young adults, and are often
biased towards specific sectors of society (e.g., educated and a relatively high socio-economic
status) [36]. Further, cultural variation exists in the acceptance and uptake of robots [9], and
this cultural heterogeneity is not fully represented in basic research, which tends to be conducted
in industrialised countries, often in western ones. As research on human–robot interaction grad-
ually moves towards broader geographical and societal representation, it is important to consider
differences in expectations, attitudes, and beliefs, as well as in prior experiences with robots. This
variation needs to be considered in the forms of individual differences (e.g., in learning and
plasticity), as well as differences between age groups (e.g., [37]) and cultures. For example,
one needs to take into consideration that countries such as Japan and South Korea have a longer
tradition of research and development in this area thanmost western countries [38–40]. Similar to
an individualised approach that many technology companies adopt (e.g., social media and
streaming services), for which cognitive neuroscience has also advocated [41], the time is ripe
for research into human–robot interaction to adopt methods that are sensitive to and capitalise
upon individual differences. Considering how quickly people adopt and can adapt to new tech-
nologies, as well as the impact of potential generational differences on attitudes towards such
technologies, and the continuous development of new social robotics platforms, it is imperative
to keep in mind what a fast-moving and continuously evolving target human–robot interaction is.
In order for research in this dynamic area to maximise relevance and generalisability, specialised
methods that enable researchers to map this variation are required. Combining real and extended
interactions with continuous data collection, neuroscience methods and machine learning, could
thus be a major step towards personalised human–robot interaction [42].

The Promises and Pitfalls of Using Mobile Brain Imaging in Embodied
Human–Robot Interaction Studies
New developments in mobile neuroimaging techniques provide the necessary testing ground for
how robots might resonate at the social level. One promising technique for studying human–
robot interactions is functional near infrared spectroscopy (fNIRS). This technique has been
advancing steadily since a connection between human brain function and corresponding light
absorption was originally established [43]. This imaging modality, like fMRI, maps the blood
oxygen level dependent response, taking advantage of the transparency of biological tissue
(such as skin and bone) in the near-infrared spectrum (for a comprehensive review see [44]).
Light shone on the head with laser diodes or LEDs travels through the skull, scatters back in a
banana-shaped curve and is eventually picked up by a detector located at approximately 3 cm
separation. The constraints of fNIRS relate to its relatively shallow penetration depth (reaching
the outer layers of the cerebral cortex) and relatively low spatial (2–3 cm) and temporal resolution
(up to 10 Hz). It has a lower spatial resolution than fMRI and a slower temporal resolution
than EEG, yet brings the advantages of being cost effective, portable and relatively robust to
movement artefacts.

These advantages allow for mobile and unobtrusive neuroimaging, thus presenting fNIRS as an
optimal candidate for conducting embodied human–robot experiments, especially with under-
represented groups such as young children, patients, and older adults that often cannot
380 Trends in Neurosciences, June 2020, Vol. 43, No. 6
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participate in more constraining types of data collection. Researchers in human–robot interaction
have embraced fNIRS as a tool to construct feedback loops to control robotic movement or
behaviour, [45] and as an implicit response evaluation to various robotic systems ([46–48], for a
review see [49]). Various high-quality commercial imaging systems that allow high-density
channel and hyper-scanning set-ups (with great potential for research on dyads or groups
interacting with a robot) are now available and a recent proof of concept study shows the
possibility of using fNIRS for connectivity analyses [50].

The transition from laboratory-constrained experiments that employ screen-based evaluations
of social robots, to the measurement of unrestricted real-world interactions with physically
embodied robots using fNIRS, should be a gradual process, adding complexity in a stepwise
fashion (Figure 2). For example, in recent years, the brain networks involved in observing social
interaction have been mapped in detail [51]. Two regions, the posterior superior temporal sulcus
(STS) and the temporoparietal junction (TPJ), code different aspects of observed interactions
[52–54]. A logical next question is the extent to which the presence and content of interactions
with robots is also coded in these regions in third-person encounters. Following on, insights
gained from these experiments will pave the way for an embodied research approach where
brain activity can be measured during real interactions between humans and robots in
A step-by-step approach for taking human−robot interactions out of the laboratory by using fNIRS

TPJ

pSTS

Step 1: identification of target brain regions

Step 3: embodied human−robot interactions in the laboratoryStep 4: unconstrained human−robot interactions outside the laboratory

Step 2: observation of human−human interactions and human−robot interactions
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Figure 2. Employing Functional Near-Infrared Spectroscopy for Unconstrained Human–Robot Interactions
A stepwise approach can be undertaken to allow for unconstrained human–robot interactions outside the laboratory in the
real world. A first step is the identification of brain regions implicated in a social cognitive process of interest as identified in
previous findings (e.g., literature and pilot studies). This is followed by a screen-based exploration of the involvement o
these regions during the observation of human–human and human–robot interactions. A third step is the relatively uncon-
strained interaction with a robot in the context of a laboratory, followed by a final step that allows for embodied interactions
with a robot in everyday environments (e.g., schools and homes). The result of each step can inform the methodology and
analysis employed in the next step. Photographs provided by Michaela Kent, Anna Henschel, and Rebecca Smith.
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Outstanding Questions
What are the scope and limitations of
social cognition when interacting with
social robots? Beyond responding
to movement, recognising emotions,
and incorporating gaze behaviour of
the robot into the equation, are we
able to feel empathy for, attribute
intentions to, and collaborate with
these mechanical beings? Can we
form meaningful social relationships
with them? Will it ever be possible to
develop a robot with a range of social
cognitive abilities that resembles (or
even improves upon) that of humans?

How do long-term interactions with
social robots shape social cognition?
Could the human brain’s representa-
tion of emotions expressed by a
robot ever become indistinguishable
from the representation of emotions
expressed by a human? To what
extent can neurocognitive processes
be repurposed during human–robot
interaction, resulting in shared repre-
sentations of social cognition when
humans or robots are involved?

Do robots need to be framed as social
agents at all in order to be useful in
social contexts? Or are there some
situations (e.g., elderly care) where
social robots are perhaps most suc-
cessful and useful when introduced
simply as ‘tools’? While most studies
focussed on testing the extent to
which robots elicit responses similar
to humans, might it be more instructive
to assign robots to their own distinct
category, which stands apart from the
categories of animate agents (e.g., a
human or pet) and objects (e.g., a
phone)?

Establishing the neural mechanisms
supporting human–robot interaction
beyond the theory-of-mind network
and PPN, what role do object-specific
brain regions play during human–
robot interaction?

With the field moving towards
naturalistic interactions, to what
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unconstrained interactions. In a recent study, for instance, the authors used a general linear
model (GLM)-based analysis to automatically identify functional events in fNIRS data, and
employed a ‘brain-first’ approach, where instead of being constrained by a block- or event-
related task design, a more ecologically valid setting can be chosen [55]. One can envision applying
similar methodologies in the context of human–robot interaction experiments.

When using fNIRS in embodied interaction experiments with social robots, several decisions
need to be taken: (i) will the device be used to control the robot or inform the evaluation of the
robot?; (ii) how long and ‘natural’ or unconstrained can the interaction be and still yield reliable
and interpretable data? Most fNIRS systems, while lightweight and portable in a fitted backpack,
cannot be worn for longer than about 45 min, due to the pressure of the optodes on participants’
scalps. When performing games or tasks that involve joint movement, another important limita-
tion to keep in mind is that most commercially available social robots are not capable of repeating
the same motions for hours on end, as motors can overheat and batteries run out. However,
despite these constraints, using fNIRS in embodied social robotics studies promises to take us
one step closer to following the tenets of a two-person neuroscience [33]. Only by freeing the
robots from the screen can we begin to understand how embodied interactions affect cognitive
processes in socially relevant areas of the cortex, including the superior temporal sulcus,
temporoparietal cortex and frontal cortex.

Concluding Remarks
Neuroscience-informed human–robot interaction is making important advances in changing the
landscape of social robotics, while concurrently deepening our understanding of the human
brain. Beyond perceiving robots in screen-based experiments, recent insights have shown that
more sophisticated analysis methods and the trend of gathering data during real-time, embodied
interactions with robots, can deepen our knowledge of core mechanisms supporting social
cognition. An added (and natural) benefit to this basic human neuroscience research, is that it
also stands to inform the development and design of next generation social robots, the same
robots that may eventually become social companions that provide support and care. That
being said, just over a decade of neuroscientific contributions to human–robot interaction have
shown that major questions still remain, for instance: (i) how does the sophisticated neural
machinery of the human brain support our interactions with these novel, mechanical companions?;
(ii) how does the representation of social cognition change over time as robots become more
deeply integrated into our social life (seeOutstanding Questions)? Insights from future studies com-
bining human neuroscience and social robotics will prepare us for a future of living with
autonomous robots that resonate with us at the social level.
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